МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Л.Г. Киселева, Т.Г. Смирнова

ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ В ПРИМЕРАХ И ЗАДАЧАХ

Учебно-методическое пособие

Рекомендовано методической комиссией института информационных технологий, математики и механики для студентов ННГУ, обучающихся по направлениям подготовки 010302 «Прикладная математика и информатика», 020302 «Фундаментальная информатика и информационные технологии», 090303 «Прикладная информатика (в информационной сфере)», 090304 «Программная инженерия»

Нижний Новгород 2017 УДК 519.95 ББК 22.174 К – 44

К–44 Киселева Л.Г., Смирнова Т.Г. ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ В ПРИМЕРАХ И ЗАДАЧАХ: учебно-методическое пособие. – [электронный ресурс] – Нижний Новгород: Нижегородский госуниверситет, 2017. – 58 с.

Фонд электронных образовательных ресурсов ННГУ

Рецензент: канд. тех. наук, доцент Е.А.Кумагина

В пособии изучаются основные понятия и различные представления функций алгебры логики. Особое внимание уделяется проблеме полноты систем булевых функций. Изложение каждой темы сопровождается необходимым теоретическим материалом и примерами решения типовых задач, а также предлагаются задачи для самостоятельного решения.

Учебно-методическое пособие предназначено для бакалавров первого курса института информационных технологий, математики и механики направлений подготовки «Прикладная математика и информатика», «Фундаментальная информатика и информационные технологии», «Прикладная информатика (в информационной сфере)», «Программная инженерия», изучающих курсы «Дискретная математика», «Математические основы информатики».

УДК 519.95 ББК 22.174

© Нижегородский государственный Университет им. Н.И. Лобачевского, 2017

Глава 1. ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

1.1. Основные понятия и определения

Пусть $E = \{0,1\}$. Набор $(\alpha_1, \alpha_2, ..., \alpha_n)$, где $\alpha_i \in E$, называется булевым или двоичным набором и обозначается через $\widetilde{\alpha}^n$. Число n называется длиной набора $\widetilde{\alpha}^n$, а число единиц в наборе $\widetilde{\alpha}^n -$ весом набора $\widetilde{\alpha}^n$. Каждому двоичному набору $\widetilde{\alpha}^n$ можно сопоставить число $v(\widetilde{\alpha}^n) = \sum_{i=1}^n \alpha_i \cdot 2^{n-i} -$ номер набора $\widetilde{\alpha}^n$.

Набор $\tilde{\alpha}^n$ является двоичным разложением своего номера $v(\tilde{\alpha}^n)$.

 E^n – множество всех двоичных наборов длины n.

Функция $f(x_1, x_2, ..., x_n)$, определенная на множестве E^n и принимающая значения из множества E, называется функцией алгебры логики или булевой функцией от n переменных, т.е. $f: E^n \to E$. Набор символов переменных $(x_1, x_2, ..., x_n)$ будем обозна-

чать через \tilde{x}^n .

Булеву функцию $f(\tilde{x}^n)$ при $n \ge 1$ можно задать таблицей (табл. 1.1), в которой наборы $\tilde{\alpha}^n = (\alpha_1, \alpha_2, ..., \alpha_n)$ располагаются в порядке возрастания их номеров.

x_1	x_2	•••	x_{n-1}	x_n	$f(x_1, x_2,, x_{n-1}, x_n)$
0	0		0	0	f(0,0,,0,0)
0	0		0	1	f(0,0,,0,1)
0	0		1	0	f(0,0,,1,0)
					•••
1	1		1	1	f(1,1,,1,1)

Имея в виду такое *стандартное расположение на-*

Табл. 1.1. Табличное задание булевой функции

боров, булеву функцию $f(\tilde{x}^n)$ удобно задавать вектором ее значений: $f(\tilde{x}^n) = (f_0, f_1, ..., f_{2^n-1})$, где координата f_i равна значению функции $f(\tilde{x}^n)$ на наборе, имеющем номер i $(i = 0, 1, ..., 2^n - 1)$.

Пусть $P_2(n)$ — множество всех булевых функций от n переменных, т.е. $P_2(n) = \Big\{ f\Big(\widetilde{x}^n\Big) \Big| \ f: E^n \to E \ \Big\}.$

Теорема 1.1.1. Мощность $|P_2(n)|$ множества всех булевых функций от n переменных равна 2^{2^n} .

Доказательство. Так как функцию алгебры логики от n переменных можно задать упорядоченным двоичным набором длины 2^n , то число различных функций алгебры логики от n переменных равно числу всех двоичных наборов длины 2^n , т.е. 2^{2^n} . Теорема доказана.

С ростом числа переменных таблица, задающая булеву функцию, сильно усложняется, становится громоздкой. Число функций от n переменных быстро растет: $|P_2(1)| = 4$, $|P_2(2)| = 16$, $|P_2(3)| = 256$, $|P_2(4)| = 65536$.

Рассмотрим теперь элементарные функции алгебры логики.

Имеются четыре булевы функции от одной переменной (см. табл. 1.2). Эти функции носят соответственно следующие

названия:

0 – константа *нуль*.

х – тождественная функция.

x – *отрицание* x, читается как «не x».

1 – константа единица.

х	0	х	\bar{x}	1
0	0	0	1	1
1	0	1	0	1

Табл.1.2. Функции одной переменной

x	у	x & y	$x \vee y$	$x \oplus y$	$x \rightarrow y$	$x \leftrightarrow y$	$x \mid y$	$x \downarrow y$
0	0	0	0	0	1	1	1	1
0	1	0	1	1	1	0	1	0
1	0	0	1	1	0	0	1	0
1	1	1	1	0	1	1	0	0

Табл. 1.3. Элементарные функции от двух переменных

Приведенные в табл. 1.3 булевы функции от двух переменных носят следующие названия:

x & y -конъюнкция x и y, обозначается также $x \cdot y$ или xy, читается «x и y».

 $x \lor y - \partial u$ **зъюнкция** x и y, читается $\langle x$ или $y \rangle$.

 $x \oplus y$ – *сложение по модулю* **2** x и y, читается (x) плюс y».

 $x \rightarrow y - umn nukauu x u y, читается «из x следует у».$

 $x \leftrightarrow y$ — **эквивалентность** x и y, часто обозначается как $x \sim y$, читается «x эквивалентно y».

 $x \mid y$ — *штрих Шеффера* x и y, часто эта функция называется *антиконъ- юнкцией*, читается «не x или не y».

 $x \downarrow y$ — *стрелка Пирса* x и y, часто эта функция называется *антидизьюнк*-*цией*, читается «не x и не y».

Символы $\bar{}$, & , \vee , \oplus , \rightarrow , \leftrightarrow , $|$, \downarrow , участвующие в обозначениях элементарных функций, называются *погическими связками*.

Суперпозицией булевых функций $f_1,...,f_m$ называется функция f, полученная с помощью подстановок этих функций друг в друга и переименования переменных.

 Φ ормулой в алгебре логики называется всякое (и только такое) выражение вида:

- 1) x любая переменная из множества переменных X;
- 2) (\overline{F}) , $(F_1 \circ F_2)$, где F, F_1, F_2 произвольные формулы алгебры логики, а $\circ \in \{\&, \lor, \oplus, \to, \leftrightarrow, |, \downarrow\}$ логическая связка.

Обычно внешние скобки у формул не записываются. Обратим внимание, что связка отрицания сильнее, чем любая двухместная связка, а связка & – самая сильная из связок \vee , \oplus , \rightarrow , \leftrightarrow , |, \downarrow . Эти соглашения позволяют упрощать запись формул и не писать ряд скобок. Например, формула $(((x \vee y) \& z) \to ((x \& z) \vee (y \& z)))$ записывается как $(x \vee y)z \to (xz \vee yz)$.

Всякая формула, выражающая функцию f как суперпозицию других функций, каждому набору значений аргументов ставит в соответствие значение функции. Таким образом, формула является одним из способов задания и вычисления функции.

В отличие от табличного задания представление данной функции формулой не единственно.

Формулы, представляющие одну и ту же функцию, называются эквивалентными или равносильными.

Рассмотрим далее некоторые эквивалентности, характеризующие свойства элементарных булевых функций.

Основные эквивалентности алгебры логики

- 1. Функция $x \circ y$, где $\circ \in \{ \&, \lor, \oplus, \leftrightarrow, |, \downarrow \}$, обладает *свойством комму* $mamuвнос mu: x \circ y = y \circ x.$
- 2. Функция x * y, где $* \in \{ \&, \lor, \oplus, \leftrightarrow \}$, обладает свойством ассоциатив-**HOCMU:** (x * y) * z = x * (y * z).
- 3. Дистрибутивные законы:

$$(x \lor y) \& z = (x \& z) \lor (y \& z);$$

 $(x \& y) \lor z = (x \lor z) \& (y \lor z);$
 $(x \oplus y) \& z = (x \& z) \oplus (y \& z).$

4. Законы де Моргана:

a)
$$\overline{x \& y} = \overline{x} \vee \overline{y}$$
;

$$6) \ \overline{x \vee y} = \overline{x} \& \overline{y}.$$

5. Законы поглощения:

a)
$$x \lor (x \& y) = x$$
;

6)
$$x & (x \lor y) = x$$
.

6. *a)*
$$x \vee (\bar{x} \& y) = x \vee y$$
;

6)
$$x \& (x \lor y) = x \& y$$
.

7. *a)*
$$x \& \overline{x} = x \& 0 = x \oplus x = 0;$$
 b) $x \lor \overline{x} = x \lor 1 = x \longleftrightarrow x = 1.$

$$6) \ x \vee x = x \vee 1 = x \longleftrightarrow x = 1$$

8. *a)*
$$x \& x = x \lor x = x \& 1 = x \lor 0 = x \oplus 0 = x$$
;

6)
$$x \oplus 1 = x \rightarrow 0 = x \leftrightarrow 0 = x \mid x = x \downarrow x = \overline{x}$$
;

9. *a)*
$$x \oplus y = (x \& y) \lor (x \& y) = (x \lor y) \& (x \lor y);$$

$$\delta) \ x \to y = \overline{x} \vee y;$$

b)
$$x \leftrightarrow y = \overline{x \oplus y} = (x \& y) \lor (\overline{x} \& \overline{y}) = (x \lor \overline{y}) \& (\overline{x} \lor y);$$

e)
$$x \mid y = \overline{x \& y} = \overline{x} \vee \overline{y}$$
;

$$\partial) \ x \downarrow y = \overline{x \vee y} = \overline{x} \& \overline{y}.$$

В справедливости этих эквивалентностей можно убедиться путем построения таблиц соответствующих им функций.

Пример 1.1.1. По функциям $f(x_1, x_2)$ и $g(x_1, x_2)$, заданным векторно $\tilde{\alpha}_f = (1001), \ \tilde{\alpha}_g = (1110),$ построить векторное задание функции $h(\tilde{x}^3) = f(x_1, g(x_2, x_3)) \rightarrow g(x_2, f(x_1, x_3)).$

Решение. Для каждой из функций $f(x_1, x_2)$ и $g(x_1, x_2)$ перейдём от векторного задания к табличному (см. табл. 1.4).

В таблице 1.5 функция $h(\tilde{x}^3)$, реализуемая заданной формулой, построена «постепенно».

x_1	x_2	$f(x_1, x_2)$	$g(x_1, x_2)$
0	0	1	1
0	1	0	1
1	0	0	1
1	1	1	0

Табл. 1.4. Табличное задание функций

Здесь используются следующие обозначения: $g_1=g(x_2,x_3),\ f_1=f(x_1,g_1),$ $f_2=f(x_1,x_3),\ g_2=g(x_2,f_2).$

x_1	x_2	x_3	<i>g</i> ₁	f_1	f_2	82	$h(\tilde{x}^3)$
0	0	0	1	0	1	1	1
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	0	1	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	1	0	1

Табл. 1.5. Процесс построения искомой функции

Принимая во внимание тот факт, что функция $x \to y$ равна нулю только на наборе (1,0), а функция $g(x_1,x_2)$ равна нулю лишь на наборе (1,1), процедуру построения таблицы функции $h(\tilde{x}^3)$ можно упростить. В самом деле, функция $h(\tilde{x}^3)=0$ тогда и только тогда, когда $f(x_1,g(x_2,x_3))=1$ и $g(x_2,f(x_1,x_3))=0$. В свою очередь, $g(x_2,f(x_1,x_3))=0$ тогда и только тогда, когда $x_2=f(x_1,x_3)=1$. В силу того, что $f(x_1,x_3)=1$ при $x_1=x_3$, заключаем, что $g(x_2,f(x_1,x_3))=0$ либо при $x_1=x_2=x_3=1$, либо при $x_2=1$, $x_1=x_3=0$. Теперь $f(x_1,g(x_2,x_3))=1$ тогда и только тогда, когда $x_1=g(x_2,x_3)$. Замечаем, что если $x_1=0$, то $g(x_2,0)=1$ при любом значении x_2 . Если $x_1=1$, тогда

 $g(x_2,1)=1$ при единственном значении переменной $x_2=0$. Получаем, что $\widetilde{\alpha}_h=ig(11111111ig)$.

Соседними наборами по k-ой компоненте называются наборы $\widetilde{\alpha}=(\alpha_1,...,\alpha_{k-1},0,\alpha_{k+1},...,\alpha_n)$ и $\widetilde{\beta}=(\alpha_1,...,\alpha_{k-1},1,\alpha_{k+1},...,\alpha_n)$, различающиеся только в k-ой компоненте.

Переменная x_k для функции $f(x_1, x_2, ..., x_n)$ называется *существенной*, если найдется пара наборов $\widetilde{\alpha}$ и $\widetilde{\beta}$, соседних по k-ой компоненте, таких, что $f(\widetilde{\alpha}) \neq f(\widetilde{\beta})$. В противном случае переменная x_k называется *несущественной* или *фиктивной*.

Пусть для функции $f(x_1,x_2,...,x_n)$ переменная x_k является фиктивной. Возьмем таблицу, задающую функцию $f(x_1,x_2,...,x_n)$. Вычеркнем из нее все строки вида $\alpha_1,...,\alpha_{k-1},1,\alpha_{k+1},...,\alpha_n,f(\alpha_1,...,\alpha_{k-1},1,\alpha_{k+1},...,\alpha_n)$, а также столбец, соответствующий переменной x_k . Полученная таблица будет определять некоторую булеву функцию $g(x_1,x_2,...,x_{k-1},x_{k+1},...,x_n)$ от n-1 переменной. Будем говорить, что функция $g(x_1,x_2,...,x_{k-1},x_{k+1},...,x_n)$ получена из функции $f(x_1,x_2,...,x_n)$ путем удаления фиктивной переменной x_k , а также что функция $f(x_1,x_2,...,x_n)$ получается из $g(x_1,x_2,...,x_{k-1},x_{k+1},...,x_n)$ путем введения фиктивной переменной x_k .

Две функции $f(\tilde{x}^n)$ и $g(\tilde{x}^m)$ называются **равными**, если функцию $f(\tilde{x}^n)$ можно получить из функции $g(\tilde{x}^m)$ путем введения и удаления фиктивных переменных. Заметим, что для любой функции, отличной от константы 0 или 1, существует равная ей, у которой все переменные существенные.

Пример 1.1.2. Перечислить все существенные и фиктивные переменные у функции $f(\tilde{x}^3) = (11110011)$.

Решение. Рассмотрим таблицу значений функции $f(\tilde{x}^3)$ (табл.1.6).

Сравнивая значения функции на всех парах наборов, соседних по переменной x_3 , отметим, что f(0,0,0) = f(0,0,1) = 1,

 $f(0,1,0)=f(0,1,1)=1, \ f(1,0,0)=f(1,0,1)=0$ и f(1,1,0)=f(1,1,1)=1. Получаем, что $f(x_1,x_2,0)\equiv f(x_1,x_2,1).$ Следовательно, переменная x_3 фиктивная.

Строим функцию $g(\tilde{x}^2)$ посредством операции удаления из функции $f(\tilde{x}^3)$ фиктивной переменной x_3 : вычеркнем из табл. 1.6 все строки, соответствующие наборам вида $(\alpha_1,\alpha_2,1)$ и столбец, соответствующий переменной x_3 .

x_1	x_2	x_3	$f(\tilde{x}^3)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Табл. 1.6. Функция $f(\tilde{x}^3)$

В таблице 1.7 представлена полученная функция $g(x_1, x_2)$.

Далее, так как g(1,0)=0, а g(1,1)=1, заключаем, что переменная x_2 существенная. Аналогично, так как g(0,0)=1, а g(1,0)=0, то переменная x_1 существенная. Итак, у функции $f(\widetilde{x}^3)$ переменные x_1 и x_2 существенные, а переменная x_3 фиктивная. (Нетрудно убедиться в том, что $f(\widetilde{x}^3)=x_1\to x_2$.)

x_1	x_2	$g(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Табл. 1.7. Функция $g(\tilde{x}^2)$

Задачи

- **1.1.1.** По функциям $f(x_1, x_2)$ и $g(x_1, x_2)$, заданным векторно, построить функцию h:
 - 1) $\tilde{\alpha}_f = (1011), \ \tilde{\alpha}_g = (0111),$
 - a) $h(\tilde{x}^2) = f(x_1, g(x_1, x_2));$
 - 6) $h(\tilde{x}^2) = g(x_2, f(x_2, x_1));$
 - *e)* $h(\tilde{x}^2) = f(f(x_1, g(x_1, x_2)), g(x_1, x_2));$
 - $e) h(\tilde{x}^3) = g(x_1, x_2) \oplus f(x_3, g(x_1, x_2));$

d)
$$h(\tilde{x}^3) = f(x_2, g(x_3, x_1)) \leftrightarrow g(x_1, g(x_2, x_3)).$$

2)
$$\tilde{\alpha}_f = (1010), \ \tilde{\alpha}_g = (0110),$$

a)
$$h(\tilde{x}^3) = f(x_3, g(x_1, x_2));$$

6)
$$h(\tilde{x}^3) = g(g(x_3, x_2), f(x_1, x_3));$$

e)
$$h(\tilde{x}^3) = f(f(x_3, g(x_1, x_2)), g(x_1, x_2));$$

$$e) h(\tilde{x}^3) = f(f(x_1, x_2), g(x_3, x_1)) \to g(x_1, g(x_1, x_2)).$$

1.1.2. Доказать тождества:

1)
$$x \lor y = (x \to y) \to y$$
;

2)
$$x \leftrightarrow y = (x \to y) & (y \to x);$$

3)
$$x \downarrow y = ((x \mid x) \mid (y \mid y)) \mid ((x \mid x) \mid (y \mid y));$$

4)
$$x \lor (y \leftrightarrow z) = (x \lor y) \leftrightarrow (x \lor z);$$

5)
$$x \& (y \leftrightarrow z) = ((x \& y) \leftrightarrow (x \& z)) \leftrightarrow x;$$

6)
$$x \rightarrow (y \leftrightarrow z) = (x \rightarrow y) \leftrightarrow (x \rightarrow z);$$

7)
$$x \lor (y \to z) = (x \lor y) \to (x \lor z);$$

8)
$$x \& (y \to z) = (x \to y) \to (x \& z);$$

9)
$$x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z);$$

10)
$$x \to (y \& z) = (x \to y) \& (x \to z);$$

11)
$$x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$$
.

1.1.3. Построив таблицы соответствующих функций, выяснить, эквивалентны ли формулы A и B:

1)
$$A = \overline{x \oplus y \cdot z} \cdot \overline{y \to x \cdot z} \cdot (\overline{x} \downarrow y), B = (x \cdot y \to (y \downarrow z)) \lor x \cdot z \cdot z;$$

2)
$$A = (x \oplus y \cdot z) \rightarrow (\overline{x} \rightarrow (y \rightarrow z)), B = x \rightarrow ((y \rightarrow z) \rightarrow x);$$

3)
$$A = (x \cdot y \to z) \lor ((x \downarrow y) \mid z), B = ((x \to y \cdot z) \oplus (x \leftrightarrow y)) \lor (y \to x \cdot z);$$

4)
$$A = (x \rightarrow (y \rightarrow (x \leftrightarrow z))) \cdot (x \leftrightarrow (y \rightarrow (z \lor (x \rightarrow y)))), B = (x \rightarrow (y \rightarrow z)) \rightarrow x;$$

5)
$$A = (((x \mid y) \downarrow \overline{z}) \mid y) \downarrow (\overline{y} \rightarrow z), B = ((x \mid y) \downarrow (y \mid \overline{z})) \cdot (x \rightarrow (y \rightarrow z));$$

6)
$$A = (\overline{x} \vee \overline{y} \cdot z) \rightarrow ((x \rightarrow y) \rightarrow ((y \vee z) \rightarrow \overline{x})), B = (x \rightarrow y) \rightarrow (\overline{y} \rightarrow \overline{x});$$

7)
$$A = (x \mid \overline{y}) \rightarrow ((y \downarrow \overline{z}) \rightarrow (x \oplus z)), B = x \cdot y \cdot z \oplus (\overline{x} \rightarrow z);$$

8)
$$A = (x \cdot \overline{y} \vee \overline{x} \cdot z) \oplus ((y \to z) \to \overline{x} \cdot y), B = (x \cdot \overline{y} \cdot \overline{z} \oplus y) \oplus z;$$

9)
$$A = (\bar{x} \lor y) \to ((y \mid \bar{z}) \to (x \leftrightarrow x \cdot z)), B = x \cdot y \lor (\overline{x \to x \cdot y} \to z);$$

10)
$$A = x \rightarrow ((\bar{x} \cdot \bar{y} \rightarrow (\bar{x} \cdot \bar{z} \rightarrow y)) \rightarrow y) \cdot z, B = \overline{x \cdot (y \rightarrow \bar{z})};$$

11)
$$A = ((x \lor y) \cdot \overline{z} \to ((x \leftrightarrow \overline{z}) \oplus \overline{y})) \cdot ((x \oplus y) \cdot \overline{z}), B = (x \to y \cdot z) \cdot \overline{x \to y};$$

12)
$$A = \overline{((x \leftrightarrow y) \to (x \to \overline{z}))} \lor (x \oplus \overline{y} \cdot z), B = x \leftrightarrow (z \to y);$$

13)
$$A = \overline{(x \downarrow y)} \lor (x \leftrightarrow z) | (x \oplus y \cdot z), B = \overline{x} \cdot y \cdot z \lor \overline{x \to z};$$

14)
$$A = \overline{(x \vee \overline{y} \cdot \overline{z}) \cdot (\overline{x} \to \overline{y} \cdot z)} \cdot (x \to (y \leftrightarrow z)),$$
$$B = ((x \to y) \leftrightarrow (y \to (x \to z))) \oplus x \cdot (y \cdot z);$$

15)
$$A = x \rightarrow ((y \rightarrow z) \rightarrow y \cdot z), B = (x \lor (x \cdot y \rightarrow z)) \cdot (x \oplus y \cdot z);$$

16)
$$A = \overline{((x \lor y) \to y \cdot z) \lor (y \to x \cdot z)} \lor (x \to (\overline{y} \to z)), B = (x \to y) \lor z.$$

- **1.1.4.** Используя основные эквивалентности булевой алгебры, упростить формулы A и B из задачи 1.1.3.
- **1.1.5.** Перечислить все существенные и фиктивные переменные у следующих функций:

1)
$$f(\tilde{x}^3) = (10101010);$$

2)
$$f(\tilde{x}^3) = (10011001);$$

3)
$$f(\tilde{x}^3) = (00111100);$$

4)
$$f(\tilde{x}^4) = (0101111101 \ 011111);$$

5)
$$f(\tilde{x}^4) = (1100110000 \ 110011);$$

6)
$$f(\tilde{x}^4) = (1011010110 \ 110101);$$

7)
$$f(\tilde{x}^2) = ((x_1 \lor x_2) \to x_1 \cdot x_2) \oplus (x_1 \to x_2) \cdot (x_2 \to x_1);$$

8)
$$f(\tilde{x}^2) = (x_1 \cdot x_2 \oplus (x_1 \rightarrow x_2)) \rightarrow (x_1 \leftrightarrow x_1 \cdot x_2);$$

9)
$$f(\tilde{x}^3) = ((x_1 \to \overline{x_2}) \oplus (x_2 \to \overline{x_3})) \oplus (x_2 \to x_3);$$

10)
$$f(\tilde{x}^3) = ((x_1 \lor x_2 \cdot \overline{x_3}) \to (x_2 \to x_1 \cdot x_3)) \to (x_1 \lor x_3);$$

11)
$$f(\tilde{x}^3) = ((x_1 \downarrow (x_2 \mid x_3)) \downarrow (x_2 \downarrow (x_1 \mid x_3))) \downarrow (x_1 \mid x_2).$$

- **1.1.6.** Показать, что x_1 фиктивная переменная у функции f, реализовав для этой цели функцию f формулой, не содержащей явно переменную x_1 :
 - 1) $f(\widetilde{x}^2) = (x_2 \rightarrow x_1) \cdot (x_2 \downarrow x_2);$
 - 2) $f(\widetilde{x}^2) = (x_1 \leftrightarrow x_2) \lor (x_1 \mid x_2);$
 - 3) $f(\tilde{x}^3) = ((x_1 \oplus x_2) \rightarrow x_3) \cdot \overline{(x_3 \rightarrow x_2)};$
 - 4) $f(\tilde{x}^3) = ((x_1 \lor x_2 \cdot \overline{x_3}) \leftrightarrow (\overline{x_1} \to \overline{x_2} \cdot x_3)) \cdot (x_2 \downarrow x_3);$
 - 5) $f(\tilde{x}^3) = ((x_1 \lor x_2 \lor \overline{x_3}) \rightarrow (x_1 x_2 \mid x_3)) \oplus (x_2 \rightarrow x_1) \cdot x_3.$
- **1.1.7.** Найти число всех функций от n переменных, которые на противоположных наборах принимают одинаковые значения. При n = 2,3 найти все такие функции, существенно зависящие от всех переменных.
- **1.1.8.** Найти число всех функций от n переменных, которые на противоположных наборах принимают противоположные значения. При n = 2,3 найти все такие функции, существенно зависящие от всех переменных.
- **1.1.9.** Найти число всех функций от n переменных, которые на любой паре соседних наборов принимают противоположные значения. Найти вид этих функций.
- **1.1.10.** Доказать, что если у функции $f(\tilde{x}^n)$ $(n \ge 1)$ имеются фиктивные переменные, то она принимает значение 1 на четном числе наборов. Верно ли обратное утверждение?
- **1.1.11.** Выяснить при каких $n (n \ge 2)$ функция $f(\tilde{x}^n)$ зависит существенно от всех своих переменных:
 - 1) $f(\widetilde{x}^n) = (x_1 \vee ... \vee x_n) \rightarrow ((x_1 \vee x_2) \cdot ... \cdot (x_{n-1} \vee x_n) \cdot (x_n \vee x_1));$
 - 2) $f(\tilde{x}^n) = (x_1 x_2 \vee ... \vee x_{n-1} x_n \vee x_n x_1) \rightarrow (x_1 x_2 \oplus ... \oplus x_{n-1} x_n \oplus x_n x_1);$
 - 3) $f(\widetilde{x}^n) = ((x_1 \vee ... \vee x_n) \rightarrow x_1 \cdot ... \cdot x_n) \rightarrow (x_1 \oplus ... \oplus x_n \oplus 1);$
 - 4) $f(\widetilde{x}^n) = (x_1 \mid x_2) \oplus (x_2 \mid x_3) \oplus ... \oplus (x_{n-1} \mid x_n) \oplus (x_n \mid x_1);$
 - 5) $f(\widetilde{x}^n) = (x_1 \rightarrow (x_2 \rightarrow \dots \rightarrow (x_{n-1} \rightarrow x_n)\dots)) \rightarrow (x_1 \rightarrow x_n) \cdot \dots \cdot (x_{n-1} \rightarrow x_n)$.

1.2. Специальные представления булевых функций

Разложения булевой функции по переменным

Пусть $\sigma \in E$. Введём обозначение $x^{\sigma} = \begin{cases} x, & \text{если } \sigma = 1, \\ \overline{x}, & \text{если } \sigma = 0. \end{cases}$

Нетрудно проверить, что $x^{\sigma}=1 \iff x=\sigma.$ Тогда $x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdot ... \cdot x_k^{\sigma_k} = 1 \iff x_1 = \sigma_1, \ x_2 = \sigma_2, ..., \ x_k = \sigma_k.$

Теорема 1.2.1 (о разложении функции по переменным). Каждую булеву функцию $f(x_1, x_2, ..., x_n)$ при любом k ($1 \le k \le n$) можно представить в виде:

$$f(x_1,...,x_k,x_{k+1},...,x_n) = \bigvee_{(\sigma_1,...,\sigma_k)} x_1^{\sigma_1} ... x_k^{\sigma_k} f(\sigma_1,...,\sigma_k,x_{k+1},...,x_n),$$
(1)

где дизъюнкция берётся по всем наборам $(\sigma_1,...,\sigma_k)$ из E^k .

Доказательство. Возьмем произвольный набор значений переменных $(\alpha_1,...,\alpha_n)$ и покажем, что левая и правая часть соотношения (1) принимают на нем одно и то же значение. Левая часть дает $f(\alpha_1,...,\alpha_n)$. Правая —

$$\bigvee_{(\sigma_1,\dots,\sigma_k)} \alpha_1^{\sigma_1} \dots \alpha_k^{\sigma_k} f(\sigma_1,\dots,\sigma_k,\alpha_{k+1},\dots,\alpha_n) = \\ = \alpha_1^{\alpha_1} \dots \alpha_k^{\alpha_k} f(\alpha_1,\dots,\alpha_k,\alpha_{k+1},\dots,\alpha_n) = f(\alpha_1,\dots,\alpha_n).$$

Теорема доказана.

Представление (1) называется *разложением функции по переменным* $x_1,...,x_k$.

Следствие 1.2.2 (разложение по і-ой переменной).

$$f(x_1,...,x_n) = \overline{x_i} \ f(x_1,...,x_{i-1},0,x_{i+1},...,x_n) \lor x_i \ f(x_1,...,x_{i-1},1,x_{i+1},...,x_n).$$
 (2)

Следствие 1.2.3 (разложение по всем п переменным).

$$f(\widetilde{x}^n) = \bigvee_{(\sigma_1, \dots, \sigma_n)} x_1^{\sigma_1} \dots x_n^{\sigma_n} f(\sigma_1, \dots, \sigma_n), \tag{3}$$

где дизъюнкция берётся по всем наборам $(\sigma_1,...,\sigma_n)$ из E^n .

Если функция $f(\tilde{x}^n)$ не равна тождественно нулю, то выражение (3) можно записать в виде:

$$f(x_1,...,x_n) = \bigvee_{\substack{(\sigma_1,...,\sigma_n)\\f(\sigma_1,...,\sigma_n)=1}} x_1^{\sigma_1} \dots x_n^{\sigma_n}, \tag{4}$$

где дизьюнкция берётся по всем наборам $(\sigma_1,...,\sigma_n)$ из E^n , на которых функция $f(\tilde{x}^n)$ обращается в единицу.

Представление функции в виде (4) называется совершенной дизъюнктивной нормальной формой (сокращённо совершенной д.н.ф. или $C\mathcal{L}H\Phi$) функции $f(\tilde{x}^n)$.

Из представления функции в виде совершенной д.н.ф. и тождества $0 = x \cdot x$ получаем следующее утверждение.

Теорема 1.2.4. Всякую функцию алгебры логики можно представить в виде формулы через отрицание, конъюнкцию и дизъюнкцию.

Кроме приведенных выше разложений булевых функций, широко используются также следующие разложения.

Теорема 1.2.5. Каждую булеву функцию $f(x_1,...,x_n)$ при любом $k \ (1 \le k \le n)$ можно представить в виде:

$$f(\widetilde{x}^n) = \underbrace{\left(\sigma_1, ..., \sigma_k\right)} \left(x_1^{\overline{\sigma_1}} \vee ... \vee x_k^{\overline{\sigma_k}} \vee f(\sigma_1, ..., \sigma_k, x_{k+1}, ..., x_n)\right),$$

где конъюнкция берётся по всем наборам $(\sigma_1,...,\sigma_k)$ из E^k .

Следствие 1.2.6 (разложение по і-ой переменной).

$$f(\tilde{x}^n) = \left(\overline{x_i} \vee f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)\right) & \left(x_i \vee f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)\right).$$
 (5)

Следствие 1.2.7 (разложение по всем п переменным).

$$f(\widetilde{x}^n) = \underbrace{\left(\sigma_1, ..., \sigma_n\right)} \left(x_1^{\overline{\sigma_1}} \vee ... \vee x_n^{\overline{\sigma_n}} \vee f(\sigma_1, ..., \sigma_n)\right),\tag{6}$$

где конъюнкция берётся по всем наборам $(\sigma_1,...,\sigma_n)$ из E^n .

Если $f(\tilde{x}^n)$ не равна тождественно 1, тогда выражение (6) можно записать в виде:

$$f(\widetilde{x}^n) = \underbrace{\left(x_1^{\overline{\sigma_1}} \vee ... \vee x_n^{\overline{\sigma_n}} \right)}_{f(\sigma_1, ..., \sigma_n) = 0}, \tag{7}$$

где конъюнкция берётся по всем наборам $(\sigma_1,...,\sigma_n)$ из E^n , на которых функция $f(\tilde{x}^n)$ обращается в нуль.

Представление функции в виде (7) называется совершенной конъюнктивной нормальной формой (сокращённо совершенной к.н.ф. или $\mathit{CKH\Phi}$) функции $f(\tilde{x}^n)$.

Пример 1.2.1. Разложить по переменной x_1 , применяя формулы (2) и (5), и представить в совершенных д.н.ф. и к.н.ф. функцию $f(x_1, x_2) = x_1 \rightarrow x_2$.

Решение. $f(0,x_2)=0 \to x_2=1$, $f(1,x_2)=1 \to x_2=x_2$. Поэтому согласно (2) имеем $f(x_1,x_2)=\overline{x_1}\cdot 1\vee x_1\cdot x_2$, а используя разложение (5), получаем $f(x_1,x_2)=(\overline{x_1}\vee x_2)\&(x_1\vee 1)$.

Так как f(1,0)=0 и f(0,0)=f(0,1)=f(1,1)=1, совершенная д.н.ф. функции имеет вид $f(x_1,x_2)=x_1^0x_2^0\vee x_1^0x_2^1\vee x_1^1x_2^1=\overline{x_1}\,\overline{x_2}\vee\overline{x_1}\,x_2\vee x_1\,x_2$, а совершенная к.н.ф.: $f(x_1,x_2)=x_1^{\bar{1}}\vee x_2^{\bar{0}}=x_1^0\vee x_2^1=\overline{x_1}\vee x_2$.

Пример 1.2.2. Представить в совершенной д.н.ф. и совершенной к.н.ф. функцию $f(\tilde{x}^3) = (01101011)$.

Решение. Функция принимает значение 1 на наборах (0,0,1), (0,1,0), (1,0,0), (1,1,0) и (1,1,1). Элементарные конъюнкции, соответствующие этим наборам, таковы: $x_1^0 x_2^0 x_3^1 = \overline{x_1} \ \overline{x_2} \ x_3$, $x_1^0 x_2^1 x_3^0 = \overline{x_1} \ x_2 \overline{x_3}$, $x_1^1 x_2^0 x_3^0 = x_1 \overline{x_2} \ \overline{x_3}$, $x_1^1 x_2^0 x_3^0 = x_1 \overline{x_2} \ \overline{x_3}$, $x_1^1 x_2^0 x_3^0 = x_1 \overline{x_2} \ \overline{x_3}$, $x_1^1 x_2^0 x_3^0 = x_1 \overline{x_2} \ \overline{x_3}$ и $x_1^1 x_2^1 x_3^1 = x_1 x_2 x_3$. Значит, совершенная д.н.ф. функции $f\left(\overline{x}^3\right)$ имеет вид: $\overline{x_1} \ \overline{x_2} \ x_3 \ \sqrt{x_1} \ x_2 \overline{x_3} \ \sqrt{x_1} \ x_2 \overline{x_3}$, $x_1^1 x_2^0 x_3^0 = x_1 \overline{x_2} \ \overline{x_3}$. Для построения совершенной к.н.ф. рассматриваем все те наборы, на которых функция f обращается в нуль. Это наборы (0,0,0), (0,1,1) и (1,0,1). Элементарные дизьюнкции, соответствующие этим наборам, таковы:

$$x_1^{\bar{0}} \lor x_2^{\bar{0}} \lor x_3^{\bar{0}} = x_1^{1} \lor x_2^{1} \lor x_3^{1} = x_1 \lor x_2 \lor x_3,$$

$$x_{1}^{\bar{0}} \vee x_{2}^{\bar{1}} \vee x_{3}^{\bar{1}} = x_{1}^{1} \vee x_{2}^{0} \vee x_{3}^{0} = x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}},$$

$$x_{1}^{\bar{1}} \vee x_{2}^{\bar{0}} \vee x_{3}^{\bar{1}} = x_{1}^{0} \vee x_{2}^{1} \vee x_{3}^{0} = \overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}.$$

Перемножая эти дизъюнкции, получаем совершенную к.н.ф. функции: $f(\tilde{x}^3) = (x_1 \lor x_2 \lor x_3) \cdot (x_1 \lor \overline{x_2} \lor \overline{x_3}) \cdot (\overline{x_1} \lor x_2 \lor \overline{x_3}).$

Представление булевой функции полиномом Жегалкина

Теорема 1.2.8. Каждая булева функция $f(\tilde{x}^n)$ представима в виде:

$$f(x_{1},...,x_{n}) = \sum_{\substack{(\sigma_{1},...,\sigma_{n})\\f(\sigma_{1},...,\sigma_{n})=1}} x_{1}^{\sigma_{1}}...x_{n}^{\sigma_{n}},$$
(8)

где сумма по модулю 2 берётся по всем наборам $(\sigma_1,...,\sigma_n)$ из E^n , на которых функция $f(\tilde{x}^n)$ обращается в единицу.

Нетрудно видеть, что $x^0 = \overline{x} = x \oplus 1$, $x^1 = x = x \oplus 0$, тогда $x^{\sigma} = x \oplus \overline{\sigma}$. Подставив в (8) вместо $x_i^{\sigma_i}$ выражение $x_i \oplus \overline{\sigma_i}$, получим $f(x_1,...,x_n) = \sum_{\substack{(\sigma_1,...,\sigma_n) \\ f(\sigma_1,...,\sigma_n) = 1}} (x_1 \oplus \overline{\sigma_1}) \cdot ... \cdot (x_n \oplus \overline{\sigma_n})$.

Раскрыв скобки по закону дистрибутивности и приведя подобные члены по правилу $A \oplus A = 0$, представим функцию в виде полинома по модулю 2:

$$f(x_1,...,x_n) = \sum_{\{i_1,...,i_s\}\subseteq\{1,...,n\}} \alpha_{i_1,...,i_s} x_{i_1} ... x_{i_s},$$
(9)

где коэффициенты $\alpha_{i_1,...,i_s}$ равны 0 или 1. Пустая конъюнкция считается равной 1, так что коэффициент, соответствующий пустому множеству индексов, представляет собой свободный член полинома. Представление функции $f(\tilde{x}^n)$ в виде (9) носит название *полинома Жегалкина*. Для функции, тождественно равной нулю, в качестве полинома берется 0.

Теорема 1.2.9 Всякая булева функция может быть представлена в виде полинома Жегалкина единственным образом.

Доказательство. Существование полинома вытекает из описанного выше способа его построения. Для доказательства единственности покажем, что ме-

жду множеством всех функций от n переменных и множеством всех полиномов Жегалкина от n переменных существует биекция (взаимно однозначное соответствие). Число различных слагаемых (т. е. конъюнкций переменных) полиномов от n переменных равно числу всех подмножеств из n элементов, т. е. 2^n (пустому подмножеству соответствует слагаемое 1). Число различных полиномов, которые можно образовать из этих конъюнкций, равно числу всех подмножеств множества конъюнкций, т. е. 2^{2^n} (пустому подмножеству конъюнкций соответствует полином 0). Таким образом, число всех полиномов Жегалкина от n переменных равно числу всех функций от n переменных. Так как разным функциям соответствуют разные полиномы (одна и та же формула не может представлять две разные функции), то тем самым установлена биекция между множеством всех функций и полиномов от n переменных, что и доказывает единственность полинома Жегалкина для каждой булевой функции.

Пример 1.2.3. Построить полином Жегалкина для функции $f(\tilde{x}^3) = (01101011)$.

Решение. Совершенная д.н.ф. функции $f(\tilde{x}^3)$ имеет вид (см. пример 1.2.2): $f(\tilde{x}^3) = \overline{x_1} \ \overline{x_2} \ x_3 \lor \overline{x_1} \ x_2 \overline{x_3} \lor x_1 \overline{x_2} \ \overline{x_3} \lor x_1 x_2 \overline{x_3} \lor x_1 x_2 x_3$, тогда получаем $f(\tilde{x}^3) = (x_1 \oplus 1)(x_2 \oplus 1)x_3 \oplus (x_1 \oplus 1)x_2(x_3 \oplus 1) \oplus x_1(x_2 \oplus 1)(x_3 \oplus 1) \oplus x_1 x_2(x_3 \oplus 1) \oplus x_1 x_2 x_3$.

Для преобразования этого выражения могут быть использованы обычные приемы элементарной алгебры и соотношение $A \oplus A = 0$. В частности, применяя группировку конъюнкций и вынесение за скобки одинаковых сомножителей, получаем:

$$f(\tilde{x}^3) = (x_1 \oplus 1)(x_2 x_3 \oplus x_3 \oplus x_2 x_3 \oplus x_2) \oplus (x_3 \oplus 1)(x_1 x_2 \oplus x_1 \oplus x_1 x_2) \oplus x_1 x_2 x_3 = (x_1 \oplus 1)(x_2 \oplus x_3) \oplus (x_3 \oplus 1)x_1 \oplus x_1 x_2 x_3.$$

Далее, раскрывая скобки и учитывая, что $A \oplus A = 0$, получаем полином Жегалкина:

$$f(\tilde{x}^3) = x_1 x_2 \oplus x_1 x_3 \oplus x_2 \oplus x_3 \oplus x_1 x_3 \oplus x_1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_1 \oplus x_2 \oplus x_2 \oplus x_3 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_1 \oplus x_2 \oplus x_1 \oplus x_2 \oplus x_2 \oplus x_3 \oplus x_3 \oplus x_1 \oplus x_2 \oplus x_2 \oplus x_2 \oplus x_3 \oplus x_1 \oplus x_2 \oplus x_2 \oplus x_2 \oplus x_2 \oplus x_2 \oplus x_3 \oplus x_2 \oplus x_2$$

Кроме рассмотренного способа построения полинома Жегалкина, существуют и другие методы построения. Рассмотрим некоторые из них.

Метод неопределенных коэффициентов

Пусть $P(\widetilde{x}^n)$ — искомый полином Жегалкина, реализующий заданную функцию $f(\widetilde{x}^n)$. Запишем его в виде

$$P(\widetilde{x}^{n}) = \alpha_{0} \cdot 1 \oplus \alpha_{1} \cdot x_{1} \oplus \dots \oplus \alpha_{n} \cdot x_{n} \oplus \alpha_{1,2} \cdot x_{1} \cdot x_{2} \oplus \dots$$

$$\dots \oplus \alpha_{n-1,n} x_{n-1} \cdot x_{n} \oplus \dots \oplus \alpha_{1,\dots,n} x_{1} \cdot \dots \cdot x_{n}.$$

$$(10)$$

Найдем неизвестные коэффициенты $\alpha_0, \alpha_1, ..., \alpha_n, \alpha_{1,2}, ..., \alpha_{n-1,n}, ..., \alpha_{1,...,n}$ в этом разложении. Для каждого двоичного набора $\widetilde{\alpha} \in E^n$ составляем уравнение $P(\widetilde{\alpha}) = f(\widetilde{\alpha})$, где $P(\widetilde{\alpha})$ — выражение, получающееся из формулы (10) при подстановке $\widetilde{x} = \widetilde{\alpha}$. В итоге получаем систему из 2^n уравнений с 2^n неизвестными, которая имеет единственное решение. Решив систему, находим коэффициенты полинома $P(\widetilde{x}^n)$.

Пример 1.2.4. Методом неопределенных коэффициентов найти полином Жегалкина для функции $f(\tilde{x}^3) = (01101011)$.

Решение. Для функции от трех переменных полином Жегалкина с неопределенными коэффициентами имеет вид:

$$P(\widetilde{x}^3) = \alpha_0 \oplus \alpha_1 \cdot x_1 \oplus \alpha_2 \cdot x_2 \oplus \alpha_3 \cdot x_3 \oplus \oplus \alpha_{1,2} \cdot x_1 \cdot x_2 \oplus \alpha_{1,3} \cdot x_1 \cdot x_3 \oplus \alpha_{2,3} \cdot x_2 \cdot x_3 \oplus \alpha_{1,2,3} \cdot x_1 \cdot x_2 \cdot x_3.$$

Выпишем систему уравнений для неизвестных коэффициентов:

$$\begin{split} f(0,0,0) &= 0 = \alpha_0, \\ f(0,0,1) &= 1 = \alpha_0 \oplus \alpha_3 = \alpha_3, \\ f(0,1,0) &= 1 = \alpha_0 \oplus \alpha_2 = \alpha_2, \\ f(0,1,1) &= 0 = \alpha_0 \oplus \alpha_2 \oplus \alpha_3 \oplus \alpha_{2,3} = \alpha_{2,3}, \\ f(1,0,0) &= 1 = \alpha_0 \oplus \alpha_1 = \alpha_1, \\ f(1,0,1) &= 0 = \alpha_0 \oplus \alpha_1 \oplus \alpha_3 \oplus \alpha_{1,3} = \alpha_{1,3}, \\ f(1,1,0) &= 1 = \alpha_0 \oplus \alpha_1 \oplus \alpha_2 \oplus \alpha_{1,2} = \alpha_{1,2}, \\ f(1,1,1) &= 1 = \alpha_0 \oplus \alpha_1 \oplus \alpha_2 \oplus \alpha_3 \oplus \alpha_{1,2} \oplus \alpha_{1,3} \oplus \alpha_{2,3} \oplus \alpha_{1,2,3} = \alpha_{1,2,3}. \end{split}$$

Решая эту систему, находим решение: $\alpha_1=\alpha_2=\alpha_3=\alpha_{1,2}=\alpha_{1,2,3}=1$, $\alpha_0=\alpha_{1,3}=\alpha_{2,3}=0$.

Следовательно, $f(\tilde{x}^3) = (01101011) = x_1 \oplus x_2 \oplus x_3 \oplus x_1 x_2 \oplus x_1 x_2 x_3$.

Алгебраический метод построения полинома

Сначала формулу, реализующую функцию f, преобразуем в формулу над множеством связок $\{ ^-, \& \}$.

Затем все подформулы вида \overline{A} следует заменить на $A\oplus 1$, раскрыть скобки, пользуясь дистрибутивным законом $A\cdot (B\oplus C)=A\cdot B\oplus A\cdot C$, и применить эквивалентности $A\cdot A=A$, $A\cdot 1=A$, $A\oplus A=0$ и $A\oplus 0=A$.

Пример 1.2.5. Построить полином Жегалкина для функции $f(\widetilde{x}^3) = x_1 \vee \overline{x_1} \cdot x_2 \vee \overline{x_2} \cdot \overline{x_3}$.

Решение. Выразим функцию f в виде формулы через отрицание и конъюнкцию: $f(\tilde{x}^3) = x_1 \vee \overline{x_1} \cdot x_2 \vee \overline{x_2} \cdot \overline{x_3} = x_1 \vee x_2 \vee \overline{x_3} = \overline{x_1 \vee x_2 \vee x_3} = \overline{x_1 \vee x_2 \vee x_3} = \overline{x_1 \vee x_2 \vee x_3}$.

Заменяя теперь все подформулы вида \overline{A} на $A \oplus 1$ и раскрывая скобки, получаем полином Жегалкина: $f(\widetilde{x}^3) = (x_1 \oplus 1) \cdot (x_2 \oplus 1) \cdot x_3 \oplus 1 =$

$$= (x_1x_2 \oplus x_1 \oplus x_2 \oplus 1) \cdot x_3 \oplus 1 = x_1x_2x_3 \oplus x_1x_3 \oplus x_2x_3 \oplus x_3 \oplus 1.$$

Задачи

1.2.1. Представить в совершенной д.н.ф. и совершенной к.н.ф. функции:

1)
$$f(\tilde{x}^3) = x_1 \overline{x_2} \vee \overline{x_2} x_3 \vee (x_1 \rightarrow x_2 x_3);$$

2)
$$f(\widetilde{x}^3) = (x_1 \leftrightarrow \overline{x_2}) \lor (x_1 x_3 \oplus (x_2 \to x_3));$$

3)
$$f(\widetilde{x}^3) = (\overline{x_1} \cdot x_2 \oplus x_3) \cdot (x_1 \cdot x_3 \to x_2);$$

4)
$$f(\widetilde{x}^3) = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \cdot (x_1 \cdot x_2 \vee x_3);$$

5)
$$f(\tilde{x}^3) = (x_1 \rightarrow x_2) \oplus (x_1 \mid x_2 \cdot x_3);$$

6)
$$f(\widetilde{x}^3) = (\overline{x_1} \cdot x_2 \to x_3) \cdot (x_1 \to x_3 \to x_2).$$

1.2.2. Построить из заданной д.н.ф. функции ее совершенную д.н.ф.:

1)
$$f(\tilde{x}^3) = \overline{x_1} \cdot x_2 \vee \overline{x_3}$$
;

2)
$$f(\widetilde{x}^3) = \overline{x_1} \cdot \overline{x_2} \vee x_2 \cdot \overline{x_3} \vee x_1 \cdot \overline{x_3};$$

3)
$$f(\widetilde{x}^3) = x_1 \vee x_2 \cdot x_3 \vee \overline{x_2} \cdot \overline{x_3}$$
.

1.2.3. Построить из заданной к.н.ф. функции ее совершенную к.н.ф.:

1)
$$f(\widetilde{x}^3) = \overline{x_1} \cdot (\overline{x_2} \vee x_3);$$

2)
$$f(\widetilde{x}^3) = (x_1 \vee x_2) \cdot (\overline{x_2} \vee x_3) \cdot \overline{x_3};$$

3)
$$f(\widetilde{x}^3) = (\overline{x_1} \vee x_2) \cdot (x_1 \vee \overline{x_3}) \cdot (x_2 \vee x_3)$$
.

- **1.2.4.** Подсчитать число функций $f(\tilde{x}^n)$, у которых совершенная д.н.ф. удовлетворяет следующему условию:
 - 1) отсутствуют элементарные коньюнкции, у которых число букв с отрицаниями равно числу букв без отрицаний;
 - 2) каждая элементарная конъюнкция содержит хотя бы две буквы с отрицаниями;
 - 3) отсутствуют элементарные конъюнкции, содержащие нечетное число букв с отрицаниями;
 - 4) в каждой элементарной конъюнкции число букв с отрицаниями не больше числа букв без отрицаний.
- **1.2.5.** Выразить через полином Жегалкина все элементарные функции алгебры логики от двух переменных.
- **1.2.6.** Методом неопределенных коэффициентов найти полиномы Жегалкина для следующих функций:

1)
$$f(\tilde{x}^2) = (0100);$$

2)
$$f(\tilde{x}^3) = (01101001);$$

3)
$$f(\tilde{x}^3) = (10001110);$$

4)
$$f(\tilde{x}^3) = (00000111);$$

5)
$$f(\tilde{x}^3) = (01100110)$$
.

1.2.7. Построить полином Жегалкина функции $f(\tilde{x}^n)$:

1)
$$f(\widetilde{x}^2) = x_1 \rightarrow (x_2 \rightarrow \overline{x_1} \cdot x_2);$$

2)
$$f(\tilde{x}^2) = x_1 \cdot (x_2 \leftrightarrow x_1 \cdot \overline{x_2});$$

3)
$$f(\widetilde{x}^3) = (x_1 \downarrow x_2) | (x_2 \downarrow x_3);$$

4)
$$f(\widetilde{x}^3) = (x_1 \vee x_2) \cdot (x_1 \mid (x_3 \rightarrow x_2));$$

5)
$$f(\widetilde{x}^3) = x_1 \downarrow ((x_1 \rightarrow x_2) \lor \overline{x_3});$$

6)
$$f(\tilde{x}^3) = (x_1 \to (x_2 \to x_3)) \cdot ((x_1 \to x_2) \to x_3).$$

- **1.2.8.** Найти функцию $f(\tilde{x}^n)$, у которой длина полинома Жегалкина в 2^n раз превосходит длину ее совершенной д.н.ф. $(n \ge 1)$.
- **1.2.9.** Пользуясь свойством единственности совершенных форм и полинома Жегалкина, выяснить, равносильны ли выражения A и B, представив их в совершенной д.н.ф. или к.н.ф., либо построив для них полиномы Жегалкина:

1)
$$A = x_1 \rightarrow (x_2 \rightarrow x_3), B = (x_1 \rightarrow x_2) \rightarrow (x_1 \rightarrow x_3);$$

2)
$$A = (x_1 \cdot x_2 \rightarrow x_3) \rightarrow (x_1 \rightarrow x_3), B = \overline{x_1} \lor x_2 \lor \overline{x_3};$$

3)
$$A = x_1 \cdot x_2 \rightarrow x_3, B = (x_1 \rightarrow x_3)(x_2 \rightarrow x_3);$$

4)
$$A = x_1 \cdot x_2 \vee (x_3 \to x_1), B = \overline{x_1} \to \overline{x_3};$$

5)
$$A = (x_1 \rightarrow x_3)(x_2 \rightarrow x_3), B = (x_1 \lor x_2) \rightarrow x_3;$$

6)
$$A = x_1 \leftrightarrow x_2$$
, $B = (x_1 x_3 \leftrightarrow x_2 x_3)((x_1 \lor x_3) \leftrightarrow (x_2 \lor x_3))$.

1.3. Двойственные функции. Принцип двойственности

Функция $f^*(x_1,...,x_n)$ называется **двойственной** к функции $f(x_1,...,x_n)$, если $f^*(x_1,...,x_n) = \overline{f}(\overline{x}_1,...,\overline{x}_n)$.

Константа 0 двойственна 1, а константа 1 двойственна 0. Для нахождения функции, двойственной функции $x_1 \& x_2$, навесим отрицания над каждой переменной и над всей функцией, тогда $(x_1 \& x_2)^* = \overline{x_1} \ \overline{\& x_2} = x_1 \lor x_2$. Для функции $x_1 \lor x_2$ двойственной является функция $x_1 \& x_2$, а для функции x двойственной функцией является сама функция x.

Теорема 1.3.1 (принцип двойственности). Если

$$F(x_1,...,x_n) = g(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n)),$$
 to $F^*(x_1,...,x_n) = g^*(f_1^*(x_1,...,x_n),...,f_m^*(x_1,...,x_n)).$

Доказательство. Воспользовавшись определением двойственной функции = и соотношением x = x, получаем

$$F^*(x_1,...,x_n) = \overline{F}(\overline{x}_1,...,\overline{x}_n) = \overline{g}(f_1(\overline{x}_1,...,\overline{x}_n),...,f_m(\overline{x}_1,...,\overline{x}_n)) =$$

$$= \overline{g}(\overline{f}_1(\overline{x}_1,...,\overline{x}_n),...,\overline{f}_m(\overline{x}_1,...,\overline{x}_n)) = \overline{g}(\overline{f}_1^*(x_1,...,x_n),...,\overline{f}_m^*(x_1,...,x_n)) =$$

$$= g^*(f_1^*(x_1,...,x_n),...,f_m^*(x_1,...,x_n)), \text{ что и требовалось показать.}$$

Если функция f задана формулой через отрицание, конъюнкцию и дизъюнкцию, то справедлив следующий **принцип двойственности**: для того, чтобы получить формулу, реализующую функцию f^* , достаточно заменить все операции & на \vee , все операции \vee на &, а все константы — противоположными константами.

Из принципа двойственности вытекает, что если имеет место некоторое тождество, то справедливо и двойственное к нему. Обратим внимание, что пары a) и δ) основных эквивалентностей алгебры логики 4–7, приведенные в разделе 1.1, являются двойственными.

Пример 1.3.1. Используя принцип двойственности, построить формулу, реализующую функцию, двойственную к функции $f = x \cdot 1 \lor y \cdot (z \lor 0) \lor x \cdot y \cdot z$, и убедиться в том, что полученная формула эквивалентна формуле $A = x \cdot (y \oplus z)$.

Решение. Согласно принципу двойственности имеем:

$$f^* = (x \vee 0) \cdot (y \vee (z \cdot 1)) \cdot (x \vee y \vee z) = x \cdot (y \vee z) \cdot (x \vee y \vee z) =$$

$$= x \cdot (y \vee z) \cdot (y \vee z) = x \cdot (y \cdot z \vee y \vee z) = x \cdot (y \oplus z).$$
Значит, функция, двойственная к f , может быть реализована формулой A .

Можно поступить иначе, а именно, сначала упростить формулу, задающую функцию f:

$$f = x \cdot 1 \lor y \cdot (z \lor 0) \lor \overline{x} \cdot \overline{y} \cdot \overline{z} = x \lor y \cdot z \lor \overline{x} \cdot \overline{y} \cdot \overline{z} = x \lor y \cdot z \lor \overline{y} \cdot \overline{z} = x \lor (y \leftrightarrow z).$$

Несложно показать, что функцией, двойственной к $(x \leftrightarrow y)$, является функция $(x \oplus y)$. Теперь воспользовавшись принципом двойственности, получаем: $f^* = x \cdot (y \oplus z)$, что подтверждает эквивалентность формул.

Задачи

1.3.1. Используя непосредственно определение двойственности булевых функций, а также основные тождества, выяснить, является ли функция g двойственной к функции f:

1)
$$f = x \oplus y, g = x \leftrightarrow y;$$

$$2) \quad f = x \mid y, g = x \downarrow y;$$

3)
$$f = x \rightarrow y, g = \overline{x} \cdot y;$$

4)
$$f = x \cdot y \rightarrow z, g = \overline{x} \cdot \overline{y} \cdot z;$$

5)
$$f = (\overline{x} \to \overline{y}) \to (y \to x), \quad g = (x \to y) \cdot (\overline{y} \to \overline{x});$$

6)
$$f = x \cdot y \lor z, g = x \cdot (y \lor z).$$

1.3.2. Используя принцип двойственности, построить и упростить формулу, реализующую функцию, двойственную к функции f.

1)
$$f = (x \lor y \lor z) \cdot (y \oplus z) \lor x \cdot y \cdot z;$$

2)
$$f = (x \lor (1 \rightarrow y)) \lor y \cdot \overline{z} \lor (\overline{x} | \overline{y \downarrow \overline{z}});$$

3)
$$f = (x \downarrow y) \oplus ((x \mid y) \downarrow (\overline{x} \leftrightarrow y \cdot z));$$

4)
$$f = (\overline{x} \vee \overline{y} \vee (y \cdot \overline{z} \oplus 1)) \downarrow z$$
;

5)
$$f = (x \cdot (y \cdot z \vee 0) \leftrightarrow (z \cdot 1 \vee x \cdot y)) \vee y \cdot z;$$

6)
$$f = (x \downarrow z) \oplus ((x \lor y) \leftrightarrow (x \downarrow (y \lor z))).$$

Глава 2. ЗАМКНУТЫЕ КЛАССЫ И ПОЛНОТА СИСТЕМ ФУНКЦИЙ АЛГЕБРЫ ЛОГИКИ

2.1. Понятие функциональной полноты и замкнутости

Булевы функции удобно задавать формулами. Формула представляет собой более компактный способ задания булевой функции, чем табличный, однако она задает функцию через другие функции. В связи с этим, для любой системы булевых функций $F = \{f_1, f_2, ...\}$ возникает естественный вопрос: всякая ли булева функция представима формулой над F?

Система булевых функций $F = \{f_1, f_2, ...\}$ называется **полной системой**, если любую булеву функцию можно представить формулой над F, т. е. реализовать в виде суперпозиции функций из F.

Система $\{\&,\lor,^-\}$ (конъюнкция, дизъюнкция, отрицание) полна, т. к. любую булеву функцию можно представить в виде совершенной д.н.ф. или совершенной к.н.ф.

Из представления функции в виде полинома Жегалкина следует, что система функций $\{\&, \oplus, 0, 1\}$ также полна.

Теорема 2.1.1 (*теорема сведения*). Пусть даны две системы булевых функций $F = \{f_1, f_2, ...\}$ и $G = \{g_1, g_2, ...\}$ такие, что система F полна и каждая функция $f_i \in F$ представима формулой над G. Тогда система G также полна.

Так как дизъюнкцию можно выразить через конъюнкцию и отрицание по закону де Моргана: $x \lor y = x & y$, получаем, что система $\{ -, \& \}$ полна. Аналогично доказывается полнота системы $\{ -, \lor \}$.

Замыканием множества F называется множество всех функций из P_2 , являющихся суперпозициями функций из F. Замыкание множества F обозначается через [F].

Система булевых функций F называется замкнутой, если [F] = F. Система булевых функций F называется полной, если $[F] = P_2$.

Отметим некоторые свойства замыкания:

1)
$$F \subseteq [F]$$
;

2)
$$[[F]] = [F];$$

3) если
$$F \subseteq G$$
, то $[F] \subseteq [G]$;

4)
$$[F \cap G] \subseteq [F] \cap [G]$$
;

5)
$$[F] \cup [G] \subseteq [F \cup G]$$
.

Задачи

2.1.1. Построить множество всех функций, зависящих от переменных x_1, x_2 и принадлежащих замыканию множества F:

1)
$$F = \{x\};$$

2)
$$F = \{x_1 \oplus x_2\};$$

3)
$$F = \{0, \bar{x}\};$$

4)
$$F = \{x_1 \cdot x_2\};$$

5)
$$F = \{x_1 x_2 \lor x_2 x_3 \lor x_1 x_3\};$$
 6) $F = \{x_1 \to x_2\};$

6)
$$F = \{x_1 \to x_2\}$$

7)
$$F = \{x_1x_2, x_1 \oplus x_2\};$$

8)
$$F = \{x_1x_2 \lor x_2\bar{x}_3 \lor x_1\bar{x}_3\}.$$

2.1.2. Показать, что $f \in [F]$, выразив f формулой над множеством F:

1)
$$f = \bar{x}, F = \{0, x \to y\};$$

2)
$$f = x \oplus y$$
, $F = \{x \downarrow y\}$;

3)
$$f = x$$
, $F = \{x \oplus y\}$;

4)
$$f = x \oplus y \oplus z$$
, $F = \{x \leftrightarrow y\}$;

5)
$$f = 0$$
, $F = \{xy \oplus z\}$;

$$6) \quad f = x, \quad F = \left\{ x y \right\};$$

7)
$$f = x \vee y$$
, $F = \left\{ \overline{x} \vee \overline{y} \right\}$.

2.1.3. Воспользовавшись теоремой сведения, доказать полноту системы F:

1)
$$F = \{x_1 \downarrow x_2\};$$

2)
$$F = \{x_1 | x_2\};$$

3)
$$F = \left\{ x_1 \rightarrow x_2, \overline{x_1 \oplus x_2 \oplus x_3} \right\}$$

3)
$$F = \{x_1 \to x_2, \overline{x_1 \oplus x_2 \oplus x_3}\};$$
 4) $F = \{x_1 x_2 \oplus x_3, (x_1 \leftrightarrow x_2) \oplus x_3\};$

$$5) F = \left\{\overline{x}, x_1 \overline{x_2}\right\};$$

6)
$$F = \{x_1x_2 \oplus x_3, x_1 \leftrightarrow x_2, x_1 \oplus x_3\}.$$

2.2. Классы функций, сохраняющих константы

Будем говорить, что функция $f(x_1, x_2, ..., x_n)$ сохраняет константу $\mathbf{0}$, если $f(\tilde{0}^n) = f(0,0,...,0) = 0$. Множество всех булевых функций, сохраняющих константу $\mathbf{0}$, обозначается через T_0 .

Теорема 2.2.1. *Класс* T_0 – замкнутый.

Доказательство. Покажем, что суперпозиция $\Phi = f(f_1,...,f_m)$ функций $f, f_1,...,f_m$, принадлежащих классу T_0 , принадлежит классу T_0 . Действительно, $\Phi(0,...,0) = f(f_1(0,...,0),...,f_m(0,...,0)) = f(0,...,0) = 0$.

Множество всех функций из T_0 , зависящих от переменных $x_1, x_2, ..., x_n$, будем обозначать через $T_0(n)$.

Теорема 2.2.2.
$$|T_0(n)| = 2^{2^n-1}$$
.

Доказательство. Если $f(\tilde{x}^n) \in T_0$, тогда значения функции $f(\tilde{x}^n)$ можно произвольно выбирать на всех двоичных наборах, кроме нулевого, т. е. на $\left(2^n-1\right)$ наборах. Такой выбор осуществляется 2^{2^n-1} способами. Таким образом, $|T_0(n)| = 2^{2^n-1}$.

Функция алгебры логики $f(x_1, x_2, ..., x_n)$ сохраняем константу 1, если $f(\widetilde{1}^n) = f(1,1,...,1) = 1$. Множество всех булевых функций, сохраняющих константу 1, обозначается через T_1 .

Теорема 2.2.3. *Класс* T_1 – замкнутый.

Доказательство. Покажем, что суперпозиция $\Phi = f(f_1,...,f_m)$ функций $f,f_1,...,f_m$, принадлежащих классу T_1 , принадлежит классу T_1 . Действительно, $\Phi(1,...,1) = f(f_1(1,...,1),...,f_m(1,...,1)) = f(1,...,1) = 1$.

Множество всех функций из T_1 , зависящих от переменных $x_1, x_2, ..., x_n$, будем обозначать через $T_1(n)$.

Теорема 2.2.4.
$$|T_1(n)| = 2^{2^n-1}$$
.

Доказательство. Если $f(\tilde{x}^n) \in T_1$, тогда значения функции $f(\tilde{x}^n)$ можно произвольно выбирать на всех двоичных наборах, кроме единичного, т. е. на

 $\left(2^{n}-1\right)$ наборах. Такой выбор осуществляется $2^{2^{n}-1}$ способами. Таким образом, $\left|T_{1}(n)\right|=2^{2^{n}-1}$.

Пример 2.2.1. Найти число функций $f(\tilde{x}^n)$, принадлежащих множеству $A = T_0 \cap T_1$.

Решение. Если $f(\widetilde{x}^n) \in T_0 \cap T_1$, тогда значения функции $f(\widetilde{x}^n)$ можно произвольно выбирать на всех двоичных наборах, кроме нулевого и единичного, т.е. на (2^n-2) наборах. Такой выбор осуществляется 2^{2^n-2} способами. Таким образом, $|A| = 2^{2^n-2}$.

Задачи

- 2.2.1. Перечислить все булевы функции:
 - 1) от одной переменной, сохраняющие 0;
 - 2) от одной переменной, сохраняющие 1;
 - 3) от одной переменной, сохраняющие обе константы;
 - 4) от двух переменных, сохраняющие 0;
 - 5) от двух переменных, сохраняющие 1;
 - 6) от двух переменных, сохраняющие обе константы;
 - 7) от двух переменных, сохраняющие 0, но не сохраняющие 1;
 - 8) от двух переменных, сохраняющие 1, но не сохраняющие 0.
- **2.2.2.** Выяснить, при каких n функция $f(\tilde{x}^n)$ сохраняет константы:
 - 1) $f(\tilde{x}^n) = x_1 \oplus x_2 \oplus ... \oplus x_n$;
 - 2) $f(\widetilde{x}^n) = \left(\bigoplus_{i=1}^{n-1} x_i x_{i+1}\right) \oplus x_n x_1;$
 - 3) $f(\tilde{x}^n) = \bigoplus_{1 \le i < j \le n} x_i \cdot x_j;$
 - 4) $f(\tilde{x}^n) = \bigoplus_{1 \le i < j \le n} (x_i \lor x_j);$

5)
$$f(\tilde{x}^n) = 1 \oplus (x_1 \to x_2)(x_2 \to x_3)...(x_n \to x_1);$$

6)
$$f(\tilde{x}^n) = \bigoplus_{i=1}^{n-2} (x_i \to (x_{i+1} \to x_{i+2}));$$

7)
$$f(\widetilde{x}^n) = \bigoplus_{i=1}^{n-2} ((x_i \to x_{i+1}) \to x_{i+2}).$$

- **2.2.3.** Доказать, что если булева функция сохраняет 0, то двойственная для нее функция сохраняет 1.
- **2.2.4.** Доказать, что из всякой булевой функции, не сохраняющей 0, отождествлением всех ее переменных, можно получить функцию от одной переменной, также не сохраняющую 0, т. е. функцию \overline{x} или константу 1.
- **2.2.5.** Доказать, что из всякой булевой функции, не сохраняющей 1, отождествлением всех ее переменных, можно получить функцию от одной переменной, также не сохраняющую 1, т. е. функцию \bar{x} или константу 0.

2.3. Класс самодвойственных функций

Функция $f(x_1,...,x_n)$ называется *самодвойственной*, если она совпадает со своей двойственной, т.е. $f(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$.

Из этого определения вытекает, что функция является самодвойственной тогда и только тогда, когда на любой паре противоположных наборов она принимает противоположные значения.

Обозначим через S множество всех самодвойственных функций.

Теорема 2.3.1. Kласс S — замкнутый.

Доказательство. Покажем, что суперпозиция $\Phi = f(f_1,...,f_m)$ самодвойственных функций $f, f_1,...,f_m$ является самодвойственной. Действительно, $\Phi^* = f^*(f_1^*,...,f_m^*) = f(f_1,...,f_m) = \Phi$, т. е. S — замкнутый класс.

Множество всех самодвойственных функций от n переменных будем обозначать через S(n). Так как самодвойственная функция полностью определяется своими значениями на первой половине строк, имеет место:

Теорема 2.3.2. $|S(n)| = 2^{2^{n-1}}$.

Лемма 2.3.3 (о несамодвойственной функции). Из всякой несамодвойственной функции $f(x_1,...,x_n)$ с помощью подстановки вместо ее переменных функций x и x можно получить константу.

Доказательство. Пусть функция $f(x_1,...,x_n)$ не является самодвойственной, тогда найдется пара противоположных наборов $\widetilde{\alpha}=(\alpha_1,\alpha_2...,\alpha_n)$ и $\widetilde{\beta}=(\overline{\alpha}_1,\overline{\alpha}_2...,\overline{\alpha}_n)$, на которых значения функции совпадают, т. е. $f(\widetilde{\alpha})=f(\widetilde{\beta})=c$, где $c\in\{0,1\}$. Построим функцию одной переменной $\varphi(x)=f\Big(x^{\alpha_1},x^{\alpha_2},...,x^{\alpha_n}\Big)$. Нетрудно проверить, что $\varphi(0)=\varphi(1)=c$, что и требовалось доказать.

Проиллюстрируем эту лемму на примере.

Пример 2.3.1. Определить, можно ли получить константу из функции $f(\tilde{x}^3) = x_3 \to x_1 \ x_2$ путем подстановки x и x вместо переменных.

Решение. Перейдем к табличному заданию функции $f(\tilde{x}^3)$. В табл. 2.1 стрелками указаны пары противоположных наборов.

		x_1	x_2	x_3	$x_1 x_2$	$x_3 \rightarrow x_1 \ x_2$
Г		0	0	0	0	1
		0	0	1	0	0
	\mid	0	1	0	0	1
	$ \rightarrow$	0	.1	1	0	0
	🛶	1	0	0	0	1
		1	0	1	0	0
	igsquare	1	1	0	1	1
		1	1	1	1	1

Табл. 2.1. Табличное задание функции $f(\widetilde{x}^3)$

Замечаем, что $f \notin S$, т. к. нарушается условие самодвойственности на первом и восьмом наборах: f(000) = f(111) = 1. Таким образом, константу 1 можно получить двумя способами.

Заменим все переменные на \bar{x} , тогда $f(\bar{x},\bar{x},\bar{x}) = \bar{x} \to \bar{x} \cdot \bar{x} = 1$. Заменив все переменные на x, получим $f(x,x,x) = x \to x \cdot x = 1$. Константу 0 из заданной функции получить нельзя, т.к. не существует двух противоположных наборов, на которых функция принимает нулевое значение.

При помощи леммы о несамодвойственной функции можно получать некоторые тождества для констант.

В примере 1 мы получили следующие тождества: $x \to x \cdot x = 1$, $x \to x \cdot x = 1$. Эти тождества нетрудно доказать, используя основные тождества алгебры логики: $x \cdot x = x$, $x \to y = x \lor y$, $x \lor x = 1$.

Задачи

- **2.3.1.** Найти все самодвойственные функции существенно зависящие от двух переменных.
- **2.3.2.** Заменить прочерки в векторе $\tilde{\alpha}_f$ символами 0 или 1 так, чтобы получился вектор самодвойственной функции:

1)
$$\tilde{\alpha}_f = (01 - 0 - 0 - -11 - 0 - 1 - -);$$

2)
$$\tilde{\alpha}_f = (--01 - -11 - -01 - -10);$$

3)
$$\tilde{\alpha}_f = (11 - 00 - 01 - 10 - 1)$$
.

- **2.3.3.** Выяснить, является ли самодвойственной функция f, заданная векторно. Для несамодвойственной функции определить какие переменные следует заменить на x, а какие на x, чтобы получить константу:
 - 1) $\tilde{\alpha}_f = (01101001);$

2) $\tilde{\alpha}_f = (01111001);$

3) $\tilde{\alpha}_f = (10110110);$

- 4) $\tilde{\alpha}_f = (10101000)$.
- **2.3.4.** Выяснить, является ли функция f самодвойственной. Для несамодвойственной функции определить какие переменные следует заменить на x, а какие на x, чтобы получить константу.

1)
$$f = x \oplus y$$
;

2)
$$f = (x \rightarrow y) \rightarrow y$$
;

- 3) $f = x \cdot y \lor x \cdot z \lor y \cdot z$; 4) $f = x \oplus y \oplus z \oplus 1$;
- 5) $f = x \cdot y \vee z$; 6) $f = x \cdot y \oplus z \cdot (x \vee y)$;
- 7) $f = x \cdot y \oplus y \cdot z \oplus x \cdot z \oplus y \oplus z$; 8) $f = (x \to y) \oplus (y \to z) \oplus (z \to x) \oplus z$;
- 9) $f = x \cdot y \cdot z \oplus x \cdot y \oplus x \cdot z \oplus y \cdot z$; 10) $f = (x \vee y \vee z) \rightarrow x \cdot (y \leftrightarrow z)$.
- **2.3.5.** Подсчитать число самодвойственных булевых функций от n переменных:
 - 1) сохраняющих 0, но не сохраняющих 1;
 - 2) сохраняющих 1, но не сохраняющих 0.
- **2.3.6.** Доказать, что среди всех самодвойственных булевых функций от n переменных число функций, сохраняющих 0, равно числу функций, сохраняющих 1. Найти это число.

2.4. Монотонность и класс монотонных функций

Пусть наборы $\widetilde{\alpha}=(\alpha_1,\alpha_2...,\alpha_n),\ \widetilde{\beta}=(\beta_1,\beta_2,...,\beta_n),$ таковы, что $\alpha_i\geq\beta_i$ для всех i=1,2,...,n, тогда будем говорить, что $\widetilde{\alpha}=(\alpha_1,\alpha_2...,\alpha_n)$ больше или равен $\widetilde{\beta}=(\beta_1,\beta_2,...,\beta_n),$ и обозначать через $\widetilde{\alpha}\succeq\widetilde{\beta}$. Если для наборов $\widetilde{\alpha}$ и $\widetilde{\beta}$ выполнено одно из двух неравенств: $\widetilde{\alpha}\succeq\widetilde{\beta}$ или $\widetilde{\beta}\succeq\widetilde{\alpha}$, то будем говорить, что наборы $\widetilde{\alpha}$ и $\widetilde{\beta}$ *сравнимы*. В противном случае, наборы $\widetilde{\alpha}$ и $\widetilde{\beta}$ *несравнимы*. Очевидно, что любые два соседних набора сравнимы.

Функция $f(x_1,...,x_n)$ называется **мономонной**, если для любых $\widetilde{\alpha}$ и $\widetilde{\beta}$, таких, что $\widetilde{\alpha}\succeq\widetilde{\beta}$ выполнено неравенство: $f(\widetilde{\alpha})\!\geq\!f(\,\widetilde{\beta}\,)$. В противном случае, функция называется **немономонной**.

Множество всех монотонных функций обозначим через M, а множество всех монотонных функций от n переменных – через M(n).

Теорема 2.4.1. *Класс* M – замкнут.

Доказательство. Покажем, что суперпозиция $\Phi = f(f_1,...,f_m)$ монотонных функций $f,f_1,...,f_m$ является монотонной функцией.

Пусть $\tilde{x}=(x_1,...,x_n), \quad \tilde{x}^1=(x_{11},...,x_{1k_1}),..., \quad \tilde{x}^m=(x_{m1},...,x_{mk_m})$ — наборы переменных функций $\Phi, f_1,...,f_m$, причем множество переменных функции Φ состоит из тех и только тех переменных, которые встречаются у функций $f_1,...,f_m$. Пусть $\tilde{\alpha}$ и $\tilde{\beta}$ — два набора длины n значений переменных \tilde{x} , причем $\tilde{\alpha} \preceq \tilde{\beta}$. Эти наборы определяют наборы $\tilde{\alpha}^1, \tilde{\beta}^1,...,\tilde{\alpha}^m, \tilde{\beta}^m$ значений переменных $\tilde{x}^1,...,\tilde{x}^m$ такие, что $\tilde{\alpha}^1 \preceq \tilde{\beta}^1,...,\tilde{\alpha}^m \preceq \tilde{\beta}^m$. В силу монотонности функций $f_1,...,f_m$ имеем: $f_1(\tilde{\alpha}^1) \leq f_1(\tilde{\beta}^1),...,f_m(\tilde{\alpha}^m) \leq f_m(\tilde{\beta}^m)$. Поэтому

$$(f_1(\widetilde{\alpha}^1),...,f_m(\widetilde{\alpha}^m)) \leq (f_1(\widetilde{\beta}^1),...,f_m(\widetilde{\beta}^m)),$$

и в силу монотонности ƒ имеем

$$f(f_1(\widetilde{\alpha}^1), ..., f_m(\widetilde{\alpha}^m)) \le f(f_1(\widetilde{\beta}^1), ..., f_m(\widetilde{\beta}^m)).$$

Значит, $\Phi(\tilde{\alpha}) \leq \Phi(\tilde{\beta})$. Тем самым показали, что класс всех монотонных функций замкнут относительно операции суперпозиции, т. е. любая суперпозиция монотонных функций является монотонной функцией.

Лемма 2.4.2 (*о немонотонной функции*). Из всякой немонотонной функции $f(x_1,...,x_n)$ с помощью подстановки вместо ее переменных функций 0, 1 и x можно получить x.

Доказательство. Пусть функция $f(x_1,...,x_n)$ немонотонна, тогда найдется такая пара сравнимых наборов $\widetilde{\alpha}=(\alpha_1,\alpha_2...,\alpha_n)$ и $\widetilde{\beta}=(\beta_1,\beta_2,...,\beta_n)$, что $\widetilde{\alpha}\succeq\widetilde{\beta}$, а $f(\widetilde{\alpha})< f(\widetilde{\beta})$, т.е. $f(\widetilde{\alpha})=0$, $f(\widetilde{\beta})=1$. Так как $\alpha_i\geq\beta_i$, то для каждого i (i=1,...,n) выполнено либо $\alpha_i=\beta_i$ (в этом случае переменную x_i заменяем на α_i), либо $\alpha_i>\beta_i$ (в этом случае переменную x_i заменяем на x). В результате замены получим функцию одной переменной, обозначим ее через $\varphi(x)$. Нетрудно проверить, что $\varphi(0)=f(\widetilde{\beta})=1$, $\varphi(1)=f(\widetilde{\alpha})=0$, т.е. $\varphi(x)=\overline{x}$. Лемма доказана.

Замечание. Если функция не является монотонной, найдется пара соседних наборов, на которых нарушается условие монотонности.

Следствие 2.4.3. Если функция $f(x_1,...,x_n)$ немонотонна, то из нее с помощью подстановки констант вместо (n-1)-ой переменной и одной переменной x можно получить x.

Доказательство. В силу замечания, найдется пара наборов $\widetilde{\alpha}$ и $\widetilde{\beta}$, соседних по i –ой компоненте, таких что $\widetilde{\alpha} \succeq \widetilde{\beta}$, на которых условие монотонности нарушается, т. е. $f(\widetilde{\alpha}) < f(\widetilde{\beta})$.

Очевидно, $\widetilde{\alpha}=(\alpha_1,...,\alpha_{i-1},1,\alpha_{i+1},...,\alpha_n), \ \widetilde{\beta}=(\alpha_1,...,\alpha_{i-1},0,\alpha_{i+1},...,\alpha_n).$ Рассмотрим функцию $\varphi(x)=f(\alpha_1,...,\alpha_{i-1},x,\alpha_{i+1},...,\alpha_n).$ Легко видеть, что $\varphi(0)=f(\ \widetilde{\beta}\)=1, \ \varphi(1)=f(\widetilde{\alpha})=0,$ т. е. $\varphi(x)=x$, что и требовалось доказать.

Пример 2.4.1. Выяснить, можно ли получить функцию \bar{x} из функции $f(\tilde{x}^3) = x_1 \oplus x_2 x_3$ путем соответствующей замены переменных.

Решение. Функция f немонотонна, т. к. f(100)=1, f(111)=0, тогда по лемме о немонотонной функции из этой функции можно получить функцию \bar{x} . Подставим вместо переменной x_1 константу 1, а вместо переменных $x_2, x_3 - x$, тогда $f(1,x,x)=1\oplus x\cdot x=\bar{x}$. Чтобы воспользоваться следствием леммы, выберем пару соседних наборов, на которых нарушено условие монотонности. Имеем, f(110)=1, f(111)=0. Выбирая соответствующую замену переменных, получаем, что $f(1,1,x)=1\oplus 1\cdot x=\bar{x}$.

Проверку на монотонность булевой функции $f(\widetilde{x}^n)$, заданной своим вектором значений $\widetilde{\alpha}_f = (\alpha_0, \alpha_1, ..., \alpha_{2^n-1})$, можно осуществить следующим образом. Разделим вектор $\widetilde{\alpha}_f$ на две равные части $\widetilde{\alpha}_{f_0^1} = (\alpha_0, \alpha_1, ..., \alpha_{2^{n-1}-1})$ и $\widetilde{\alpha}_{f_1^1} = (\alpha_{2^{n-1}}, \alpha_{2^{n-1}+1}, ..., \alpha_{2^n-1})$. Если отношение $\widetilde{\alpha}_{f_0^1} \leq \widetilde{\alpha}_{f_1^1}$ не выполнено, то $f(\widetilde{x}^n)$ не является монотонной. В противном случае каждый из векторов $\widetilde{\alpha}_{f_0^1}$ ($\sigma \in \{0,1\}$) вновь разделим на две равные части и проверим для них отношение предшествования. Если хотя бы одно из отношений не выполнено, то заключаем, что $f(\widetilde{x}^n) \not\in M$. В противном случае вновь делим векторы пополам и т. д. Если отношение предшествования выполняется для всех пар векторов, то $f(\widetilde{x}^n) \in M$.

Пример 2.4.2. По вектору значений $\tilde{\alpha}_f = (10011111)$ выяснить, является ли функция f монотонной.

Решение. Поделим вектор пополам, тогда $1001 \le 11111$. На следующем шаге отношение предшествования нарушается для пары 10 и 01, а $11 \le 11$. Таким образом, заданная функция не является монотонной.

В силу замкнутости класса монотонных функций, можно утверждать, что всякая функция f, которая задана формулой, содержащей лишь связки & и \vee (или другие монотонные связки), монотонна.

Пример 2.4.3. Доказать, что функция $f = x \vee \overline{xy} \vee \overline{xy}z$ является монотонной.

Решение. Преобразуем f, применив эквивалентность вида $x \lor \overline{x}y = x \lor y$.

 $f = x \lor xy \lor xy = x \lor y \lor yz = x \lor y \lor z$. Действительно, функция f монотонна, так как представляет собой суперпозицию монотонных функций.

Задачи

- **2.4.1.** Какие из элементарных функций алгебры логики являются монотонными?
- **2.4.2.** Выяснить, является ли монотонной функция f, заданная векторно. Для немонотонной функции подобрать соответствующую замену переменных, чтобы получить $\overset{-}{x}$.
 - 1) $\tilde{\alpha}_f = (01101001);$

- 2) $\tilde{\alpha}_f = (01010111);$
- 3) $\tilde{\alpha}_f = (00110110);$
- 4) $\tilde{\alpha}_f = (00010011)$.
- **2.4.3.** Выяснить, является ли функция f монотонной. Если не является, то подобрать соответствующую замену переменных, чтобы построить из f функцию $\overset{-}{x}$.
 - 1) $f = x \oplus y \oplus z$;

2) $f = xz \oplus y$;

3) $f = x \cdot y \lor z$;

4) $f = (x \rightarrow \overline{y}) \oplus x \cdot \overline{z};$

5)
$$f = x \cdot y \oplus y \cdot z \oplus x \cdot z \oplus x$$
;

6)
$$f = x \cdot y \oplus z \cdot (x \vee y);$$

7)
$$f = (x \downarrow z) \rightarrow (y \mid \overline{z}).$$

2.4.4. Доказать, что функция f является монотонной:

1)
$$f = (x \oplus y) \cdot (x \leftrightarrow y);$$

2)
$$f = x \rightarrow (y \rightarrow x);$$

3)
$$f = x \cdot \overline{y} \cdot \overline{z} \lor x \cdot \overline{y} \cdot z \lor x \cdot y \cdot \overline{z} \lor x \cdot y \cdot z \lor \overline{x} \cdot y \cdot z;$$

4)
$$f = (x \oplus y) \cdot x \cdot y$$
;

5)
$$f = x \cdot y \oplus y \cdot z \oplus z \cdot x$$
.

2.4.5. Найти все монотонные функции, которые можно получить из вектора $\tilde{\alpha}_f$ заменой символа «—» на 0 или 1:

1)
$$\tilde{\alpha}_f = (0 -);$$

2)
$$\widetilde{\alpha}_f = (--);$$

3)
$$\tilde{\alpha}_f = (-00-);$$

4)
$$\tilde{\alpha}_f = (-10-);$$

5)
$$\tilde{\alpha}_f = (----00-);$$

6)
$$\tilde{\alpha}_f = (---1--0-);$$

7)
$$\tilde{\alpha}_f = (0 - - - - 1).$$

2.4.6. Найти все функции $f \in M \cap S$, которые можно получить из вектора $\widetilde{\alpha}_f$ заменой символа «—» на 0 или 1:

1)
$$\widetilde{\alpha}_f = (--);$$

2)
$$\tilde{\alpha}_f = (-0--);$$

3)
$$\tilde{\alpha}_f = (---1);$$

4)
$$\tilde{\alpha}_f = (-00-0---);$$

5)
$$\tilde{\alpha}_f = (-01-0---)$$
.

2.4.7. Выяснить при каких $n \ge 1$ функция $f(\widetilde{x}^n)$ монотонна:

1)
$$f(\widetilde{x}^n) = x_1 \oplus x_2 \oplus ... \oplus x_n;$$

2)
$$f(\widetilde{x}^n) = \bigoplus_{1 \le i < j \le n} x_i \cdot x_j$$
;

3)
$$f(\widetilde{x}^n) = x_1 x_2 ... x_n \rightarrow (x_1 \oplus x_2 \oplus ... \oplus x_n).$$

2.4.8. Доказать, что функция, двойственная монотонной функции, монотонна.

- **2.4.9.** Доказать, что монотонная функция, не сохраняющая нуль (единицу), равна тождественно единице (нулю).
- **2.4.10.** Доказать, что если f тождественно не равна константе, а $(f \vee f^*)$ константа, то $f \notin M \cup S$.
- **2.4.11.** Найти все самодвойственные монотонные функции $f(\tilde{x}^n)$, существенно зависящие от всех переменных (n=1,2,3,4).

2.5. Линейность и класс линейных функций

Функция $f(x_1, x_2, ..., x_n)$ называется **линейной**, если она представима полиномом Жегалкина не выше первой степени, т. е. если существуют такие константы $\alpha_i \in \{0,1\}$ (i=0,1,...,n), что

$$f(x_1, x_2, ..., x_n) = \alpha_0 \oplus \alpha_1 x_1 \oplus \alpha_2 x_2 \oplus ... \oplus \alpha_n x_n$$

Множество всех линейных функций обозначим через L.

Теорема 2.5.1. *Класс* L – *замкнут*.

Доказательство. Действительно, суперпозиция $\Phi = f(f_1, ..., f_m)$ линейных функций $f, f_1, ..., f_m$ является линейной функцией, так как при подстановке в линейное выражение других линейных выражений полученное выражение также будет линейным, т. е. L— замкнутый класс.

Множество всех линейных функций от n переменных будем обозначать через L(n).

Теорема 2.5.2.
$$|L(n)| = 2^{n+1}$$
.

Доказательство. Так как линейная функция от n переменных определяется двоичным набором $(\alpha_0, \alpha_1, ..., \alpha_n)$ длины (n+1), получаем, что $|L(n)| = 2^{n+1}$.

Линейная функция $f(x_1, x_2, ..., x_n)$, существенно зависящая от всех n переменных, имеет вид: $f(x_1, x_2, ..., x_n) = \alpha_0 \oplus x_1 \oplus ... \oplus x_n$, где $\alpha_0 \in \{0,1\}$, поэтому получаем, что таких функций только две.

Лемма 2.5.3 (*о нелинейной функции*). Из всякой нелинейной функции $f(\tilde{x}^n)$ с помощью подстановки вместо ее переменных констант 0, 1 и функций $x_1, \bar{x}_1, x_2, \bar{x}_2$ и, быть может, путем навешивания отрицания над всей функцией, можно получить конъюнкцию x_1x_2 .

Доказательство. Пусть функция $f(\tilde{x}^n)$ нелинейна относительно переменных x_1 и x_2 , тогда ее можно представить в виде:

 $f(\widetilde{x}^n) = x_1 x_2 f_1(x_3,...,x_n) \oplus x_1 f_2(x_3,...,x_n) \oplus x_2 f_3(x_3,...,x_n) \oplus f_4(x_3,...,x_n),$ где функция $f_1(x_3,...,x_n) \neq 0$ (не равна тождественно нулю), т. е. существуют такие α_3 ,..., α_n , что $f_1(\alpha_3$,..., α_n) = 1. Подставив вместо переменных x_i константы α_i для любого i=3,...,n, получим функцию от двух переменных:

$$\Psi(x_1,x_2) = f(x_1,x_2,\alpha_3,...,\alpha_n) = x_1x_2 \oplus \alpha x_1 \oplus \beta x_2 \oplus \gamma,$$

где $\alpha = f_2(\alpha_3,...,\alpha_n)$, $\beta = f_3(\alpha_3,...,\alpha_n)$, $\gamma = f_4(\alpha_3,...,\alpha_n)$. Нетрудно показать, что $\Psi(x_1 \oplus \beta, x_2 \oplus \alpha) \oplus \alpha\beta \oplus \gamma = x_1x_2$. Таким образом, получаем, что $f(x_1 \oplus \beta, x_2 \oplus \alpha, \alpha_3,...,\alpha_n) \oplus \alpha\beta \oplus \gamma = x_1x_2$, что и требовалось доказать.

Проиллюстрируем лемму о нелинейной функции на примере.

Пример 2.5.1. Выяснить, можно ли получить функцию x_1x_2 из функции $f(\tilde{x}^3) = x_1x_2x_3 \vee x_1\overline{x_2}$ соответствующей заменой переменных.

Решение. Построим полином Жегалкина для заданной функции.

$$f(x_1, x_2, x_3) = \overline{x_1 x_2 x_3 \cdot x_1 x_2} = (x_1 x_2 x_3 \oplus 1) \cdot (x_1 (x_2 \oplus 1) \oplus 1) \oplus 1 =$$

$$= x_1 x_2 x_3 \oplus x_1 x_2 x_3 \oplus x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_1 \oplus 1 \oplus 1 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_1.$$

Получили, что функция $f(x_1,x_2,x_3)$ нелинейна относительно переменных x_1 и x_2 , и по лемме о нелинейной функции из нее можно получить конъюнкцию x_1x_2 . Представим функцию в виде $f(x_1,x_2,x_3)=x_1x_2\big(x_3\oplus 1\big)\oplus x_1$.

Подставив вместо переменной x_3 константу 0, получим функцию от двух переменных: $\Psi(x_1\,,x_2\,)=f(x_1,x_2,0)=x_1x_2\oplus x_1$. Таким образом, имеем $\alpha=1$, $\beta=0$ и $\gamma=0$, а это означает, что $\Psi(x_1\oplus\beta\,,x_2\oplus\alpha)\oplus\alpha\beta\oplus\gamma=\Psi(x_1,x_2\oplus1)==x_1\big(x_2\oplus1\big)\oplus x_1=x_1x_2\oplus x_1\oplus x_1=x_1x_2$.

Заключаем, что конъюнкцию x_1x_2 можно получить из функции $f(x_1,x_2,x_3)$ заменой переменных x_2 на x_2 , x_3 на 0. Действительно, $f(x_1,x_2,0) = x_1x_2$.

Задачи

2.5.1. Какие из элементарных булевых функций являются линейными?

2.5.2. Выяснить, является ли линейной функция f, заданная векторно:

1) $\tilde{\alpha}_f = (1001);$

2) $\tilde{\alpha}_f = (1101);$

3) $\tilde{\alpha}_f = (10010110);$

4) $\tilde{\alpha}_f = (11000011);$

5) $\tilde{\alpha}_f = (01101001);$

- 6) $\tilde{\alpha}_f = (10100110);$
- 7) $\tilde{\alpha}_f = (0110100101101001);$
- 8) $\tilde{\alpha}_f = (01111011111111100);$
- 9) $\tilde{\alpha}_f = (1010010110011100)$. 10) $\tilde{\alpha}_f = (1110100110010111)$.

2.5.3. Выяснить, можно ли путем соответствующей замены переменных получить из функции f конъюнкцию $x \cdot y$:

- 1) $f = x \rightarrow y$;
- 2) $f = x \cdot y \vee y \cdot \overline{z} \vee \overline{z} \cdot x$;
- 3) $f = (x \cdot \overline{y} \vee \overline{x} \cdot y \cdot z) \oplus \overline{x} \cdot y \cdot \overline{z};$
- 4) $f = x \rightarrow (y \rightarrow z)$;
- 5) $f = x \cdot \overline{y} \vee y \cdot \overline{z} \vee z \cdot \overline{x}$.
- 6) $\tilde{\alpha}_f = (11101000);$
- 7) $\tilde{\alpha}_f = (11011011);$
- 8) $f = (x_1 \lor x_2 \lor x_4)(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4});$
- 9) $f = x_1 \overline{x_2} x_3 \overline{x_4} \vee \overline{x_1} x_2 x_3 x_4 \vee \overline{x_1} x_2 \overline{x_3} x_4 \vee \overline{x_1} x_2 x_3 \overline{x_4} \vee x_1 x_2$.

2.5.4. Заменить в векторе $\tilde{\alpha}_f$ прочерки символами 0 или 1 так, чтобы получился вектор значений некоторой линейной функции f. Выразить f полиномом Жегалкина.

1) $\tilde{\alpha}_f = (10 - 1);$

- 2) $\tilde{\alpha}_f = (0 11);$
- 3) $\tilde{\alpha}_f = (-001 -1 -);$
- 4) $\tilde{\alpha}_f = (1 101 - -);$
- 5) $\tilde{\alpha}_f = (-0 1 -00);$
- 6) $\tilde{\alpha}_f = (11 0 - 1);$
- 7) $\tilde{\alpha}_f = (--10 - 0 1 110);$
- 8) $\tilde{\alpha}_f = (1 - - - 0 110)$.

2.5.5. Найти число функций $f(\tilde{x}^n)$, принадлежащих множеству A:

1)
$$A = T_0 \cup T_1$$
;

2) $A = L - T_1$;

3)
$$A = (T_0 \cup T_1) \cap L$$
;

4) $A = S \cap T_1$;

5)
$$A = S \cap T_1 \cap L$$
;

6) $A = (T_1 \cup L) \cap S$;

7)
$$A = (S \cup L) \cap T_0$$
;

8) $A = T_0 \cup L \cup S$.

2.5.6. Доказать, что:

$$L \cap T_0 \cap T_1 = L \cap S \cap T_0 = L \cap S \cap T_1 = L \cap S \cap T_0 \cap T_1$$
.

- **2.5.7.** Доказать, что $L \subseteq T_1 \cup T_0 \cup S$.
- **2.5.8.** Доказать, что множество A не пусто:

1)
$$A = LT_1 - (T_0 \cup S);$$

2)
$$A = LT_0 - (T_1 \cup S)$$
;

3)
$$A = LS - (T_1 \cup T_0)$$
.

2.5.9. Какие функции можно получить из функции $f(\tilde{x}^n)$ путем отождествления переменных, если:

1)
$$f \in L - T_1 S$$
;

2) $f \in S - T_1$;

3)
$$f \in T_1 - T_0$$
;

4) $f \in T_1 - \overline{T_0}$;

5)
$$f \in T_0 - T_1$$
;

 $6) \ f \in \overline{T_1} - T_0;$

7)
$$f \in S - T_0$$
;

8) $f \in \overline{T_1 - T_0}$.

2.5.10. Показать, что всякая монотонная функция содержится не менее чем в двух классах из T_0, T_1, L .

2.6. Критерий полноты Поста и его применения

Теорема 2.6.1 (критерий Поста о полноте). Система функций F полна тогда и только тогда, когда она целиком не содержится ни в одном из пяти замкнутых классов: T_0, T_1, S, M, L .

Доказательство. Необходимость докажем от противного. Пусть система функций F полна и включена в один из пяти классов T_0, T_1, S, M, L , т. е.

 $F \subseteq A \in \{T_0, T_1, S, M, L\}$, где A один из пяти замкнутых классов. Тогда, $[F] = P_2$, т. е. $P_2 = [A]$, а так как класс A замкнут, то один из пяти классов совпадает с множеством всех булевых функций, что ведет к противоречию.

Достаточность. Пусть выполнено условие теоремы, т. е. существуют функции, которые не принадлежат соответствующим классам. Пусть $f_0 \not\in T_0$, $f_1 \not\in T_1, \ f_s \not\in S$, $f_m \not\in M$, $f_l \not\in L$, возможно, что некоторые из этих функций равны между собой. Покажем, что через суперпозицию этих функций можно выразить отрицание и конъюнкцию, тогда любая функция может быть выражена через суперпозицию функций из множества F.

1 этап. *Получение констант* 0 и 1.

Рассмотрим функцию $f_0 \notin T_0$. Возможны два случая:

- А) Если $f_0(\tilde{1}^n)=1$, тогда $f_0(x,...,x)=1$. Вторая константа получается из $f_1\not\in T_1\colon f_1(f_0(x,...,x),f_0(x,...,x),...,f_0(x,...,x))=0$.
- Б) Если $f_0(\tilde{1}^n)=0$, тогда $f_0(x,...,x)=\bar{x}$. По лемме о несамодвойственной функции из функции $f_s\not\in S$ и отрицания можно получить константу, обозначим ее через c. Вторая константа получается из отрицания: $f_0(c,...,c)=\bar{c}$.

2 этап. Получение отрицания.

По лемме о немонотонной функции из функции $f_m \notin M$ с помощью подстановки констант, которые были получены через суперпозицию на первом этапе, и переменной x получаем \overline{x} .

3 этап. Получение конъюнкции.

По лемме о нелинейной функции из $f_l \not\in L$ с помощью подстановки констант, функций $x, \overline{x}, y, \overline{y}$ и отрицания можно получить конъюнкцию $x \cdot y$. Теорема доказана.

Следствие 2.6.2. Всякий замкнутый класс содержится в одном из пяти классов T_0, T_1, S, M, L .

Утверждение доказывается от противного.

При исследовании полноты систем функций удобно пользоваться таблицей, которую будем называть *критериальной таблицей Поста*. Эта таблица имеет пять столбцов, каждый из которых соответствует одному из пяти предполных классов в P_2 , а строки таблицы соответствуют функциям исследуемой системы.

На пересечении строки таблицы, соответствующей функции f, и столбца, соответствующего классу K, ставится знак плюс, если $f \in K$, и минус, если $f \notin K$. Система функций полна тогда и только тогда, когда в каждом столбце содержится хотя бы один знак минус.

Пример 2.6.1. Исследовать полноту системы $F = \{0, 1, xy, x \oplus y \oplus z\}$.

Решение. Критериальная таблица Поста для исходной системы функций представлена в таблице 2.2.

	T_0	T_1	S	M	L
xy	+	+	ı	+	_
0	+	_	_	+	+
1	_	+	_	+	+
$x \oplus y \oplus z$	+	+	+	_	+

Табл. 2.2. Критериальная таблица Поста к примеру 2.6.1

Система F полна, т. к. она не содержится целиком ни в одном из пяти замкнутых классов (каждый столбец таблицы 2.2 содержит не менее одного минуса).

Полная система F называется *базисом* в P_2 , если никакая ее подсистема не является полной, т. е. 1) $[F] = P_2$; 2) для $\forall f \in F$ $[F \setminus \{f\}] \neq P_2$.

Пример 2.6.2. Выяснить, образует ли система $F = \{0, 1, xy, x \oplus y \oplus z \}$ базис?

Решение. В примере 2.6.1 показано, что система F полна. Покажем, что она образует базис, для этого достаточно показать, что после исключения любой функции из системы F будет получена неполная подсистема. Действительно, $F \setminus \{xy\} \subseteq L$, $F \setminus \{0\} \subseteq T_1$, $F \setminus \{1\} \subseteq T_0$, $F \setminus \{x \oplus y \oplus z\} \subseteq M$, что позволяет сделать вывод о том, что система F – базис.

Теорема 2.6.3. Базис в P_2 состоит не более чем из четырех функций.

Доказательство. Покажем, что из любой полной системы можно выделить полную подсистему, содержащую не более четырех функций. Действительно, если система F полна, то согласно теореме Поста о полноте в ней существует пять функций $f_0 \not\in T_0, \ f_1 \not\in T_1, \ f_s \not\in S, \ f_m \not\in M, \ f_l \not\in L,$ причем система функций $\{f_0, f_1, f_s, f_m, f_l\}$ полна.

Рассмотрим функцию $f_0 \notin T_0$. Возможны два случая:

- А) $f_0(\widetilde{1}^n) = 1$, тогда $f_0 \not\in S$ и система $\left\{ f_0 , f_1 , f_m , f_l \right\}$ полна.
- Б) $f_0(\widetilde{1}^n) = 0$, тогда $f_0 \not\in T_1, \ f_0 \not\in M$ и система $\{f_0, f_s, f_l \ \}$ полна.

Таким образом, система функций, содержащая пять и более функций не может быть базисом в P_2 .

Существование базиса из четырех функций вытекает из примера 2.6.2. Теорема доказана.

Критериальная таблица Поста может быть полезной для нахождения всех базисов, содержащихся в системе F.

Пример 2.6.3. Из полной в P_2 системы $F = \{1, x \oplus yz, x \to y, x \}$ выделить всевозможные базисы.

Решение. Критериальная таблица Поста системы F представлена в табл. 2.3.

	T_0	T_1	S	M	L
$f_1 = 1$	ı	+	1	+	+
$f_2 = x \oplus yz$	+	_	_	_	_
$f_3 = x \to y$	_	+	_	_	_
$f_4 = \overline{x}$	_	_	+	_	+

Табл. 2.3. Критериальная таблица Поста к примеру 2.6.3

По таблице составим выражение, представляющее собой к.н.ф. K, в которой элементарные дизъюнкции соответствуют столбцам таблицы и включают в качестве слагаемых символы тех функций, которые не входят в класс, соответствующий столбцу. Для исходной системы функций имеем

$$K = (f_1 \vee f_3 \vee f_4)(f_2 \vee f_4)(f_1 \vee f_2 \vee f_3)(f_2 \vee f_3 \vee f_4)(f_2 \vee f_3).$$

Раскрывая скобки и используя для упрощения эквивалентности вида $A\cdot A=A,\ A(A\vee B)=A,\ A\vee AB=A$, приведем к.н.ф. K к д.н.ф. D, в которой закон поглощения уже неприменим. Таким образом, получаем

$$K = (f_1 \lor f_3 \lor f_4)(f_2 \lor f_4)(f_2 \lor f_3) = (f_1 \lor f_3 \lor f_4)(f_2 \lor f_3 f_4) =$$

$$= f_1 f_2 \lor f_1 f_3 f_4 \lor f_2 f_3 \lor f_3 f_4 \lor f_2 f_4 \lor f_3 f_4 = f_1 f_2 \lor f_2 f_3 \lor f_2 f_4 \lor f_3 f_4.$$

По полученной д.н.ф. D выпишем подмножества функций, соответствующие слагаемым д.н.ф. D. Это и будут искомые базисы. В нашей системе имеется четыре базиса: $B_1 = \{f_1, f_2\}, B_2 = \{f_2, f_3\}, B_3 = \{f_2, f_4\}, B_4 = \{f_3, f_4\}.$

Класс F функций из P_2 называется **предполным**, если:

- 1) F неполный, т. е. [F] ≠ P_2 ;
- 2) при добавлении к F произвольной функции из P_2 , не принадлежащей F, вновь полученная система будет полной, т. е. для $\forall f \notin F$ $[F \cup \{f\}] = P_2$.

Теорема 2.6.4. В алгебре логики существует пять предполных классов T_0, T_1, S, M, L .

Доказательство. 1) Покажем сначала, что ни один из пяти классов T_0, T_1, S, M, L не содержится в другом.

	T_0	T_1	S	M	L
T_0		0	0	$x \oplus y$	xy
T_1	1		1	$x \leftrightarrow y$	xy
S	$-\frac{1}{x}$	$-\frac{1}{x}$		$\frac{-}{x}$	$xy \oplus xz \oplus yz$
M	1	0	0		xy
L	1	0	0	$x \oplus y$	

Табл. 2.4. Критериальная таблица Поста к теореме 2.6.4

Для этого достаточно для каждого из пяти классов указать четыре функции, принадлежащие данному классу, но не принадлежащие остальным четырем (см. табл. 2.4).

2) Докажем, что все классы — T_0, T_1, S, M, L являются предполными. Действительно, пусть $A \in \{T_0, T_1, S, M, L\}$ и $f \notin A$. Тогда система $A \cup \{f\}$ не содер-

жится ни в одном из пяти классов, так как A не содержится в четырех из них, а f не содержится в A. Следовательно, система $A \cup \{f\}$ — полная и A — предполный класс.

3) Покажем теперь, что в P_2 других предполных классов нет. Пусть B — предполный класс. Тогда $[B] \neq P_2$ и $\exists A \in \{T_0, T_1, S, M, L\}$, что $B \subseteq A$. Если $B \neq A$, то $\exists f$ такая, что $f \in A$, $f \notin B$, тогда $B \cup \{f\} \subseteq A$ и $[B \cup \{f\}] \neq P_2$. Полученное противоречие завершает доказательство теоремы.

Функция $f(\tilde{x}^n)$ называется **шефферовой** (или **функцией Шеффера** от n переменных), если она полна, т. е. образует базис в P_2 . Нетрудно проверить, что $x_1 | x_2$ и $x_1 \downarrow x_2$ являются функциями Шеффера от двух переменных.

Пример 2.6.3. Показать полноту системы функций $G = \{f(x,y,z) = xy \rightarrow z, g(x,y) = x \oplus y\}$. Проиллюстрировать поэтапное доказательство теоремы Поста, т. е. выразить константы, отрицание и конъюнкцию через функции системы G.

Решение. Рассмотрим функцию $f(x,y,z) = xy \rightarrow z$, построим для нее таблицу значений (см. табл. 2.5). Очевидно, что f не самодвойственна и не монотонна, т. к. условие монотонности нарушается на третьем и седьмом наборах: f(0,1,0) = 1, f(1,1,0) = 0. Нетрудно проверить, что у этой функции все переменные существенные, т. к. она принимает значение 0 только на одном набо-

X	у	Z	$xy \rightarrow z$	$x \oplus y \oplus z$	$x \oplus y \oplus z \oplus 1$
0	0	0	1	0	1
0	0	1	1	1	0
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	1	1	1	0

Табл. 2.5. Табличное задание функции f(x, y, z)

ре, для которого найдутся соседние наборы по первой, по второй и по третьей переменным, значения функций на которых равны 1. Если бы эта функция была линейна, то она совпала бы с одной из функций $x \oplus y \oplus z$ или $x \oplus y \oplus z \oplus 1$ (см. табл. 2.5). Заключаем, что функция f не линейна.

Вторая функция $g(x,y)=x\oplus y$ на нулевом и на единичном наборах принимает значение 0. Найдем для нее двойственную функцию: $g^*(x,y)=\overline{x}\oplus\overline{y}=(x\oplus 1)\oplus (y\oplus 1)\oplus 1=x\oplus y\oplus 1$. Из единственности представления функции в виде полинома Жегалкина, получаем, что функция g не самодвойственна. Эта функция не монотонна, так как условие монотонности нарушается на наборах (0,1) и (1,1).

Построим критериальную таблицу Поста (табл. 2.6) для исходной системы функций G.

	T_0	T_1	S	M	L
$xy \rightarrow z$	_	+	_	-	_
$x \oplus y$	+	_	_	_	+

Табл. 2.6. Критериальная таблица Поста к примеру 2.6.3

По теореме Поста делаем вывод, что система функций $G = \big\{ f(x,y,z) = xy \to z, \, g(x,y) = x \oplus y \big\} \text{ полна}.$

Проиллюстрируем теперь на примере этой полной системы функций поэтапное доказательство теоремы Поста.

- 1) Получение констант. Имеем, f(0,0,0) = f(1,1,1) = 1, следовательно, f(x,x,x) = 1, т. о. константу 1 можно выразить в виде формулы $xx \to x = 1$. Константу 0 получим из функции $g(x,y) \notin T_1$: g(f(x,x,x),f(x,x,x)) = 0 или в виде формулы $(xx \to x) \oplus (xx \to x) = 0$.
- 2) Получение отрицания. По лемме о немонотонной функции имеем $f(x,1,0) = \bar{x}$ или в виде формулы: $x \cdot 1 \to 0 = \bar{x}$. Аналогично, применяя эту лемму для второй функции, получим, что $g(1,x) = \bar{x}$ или в виде формулы $1 \oplus x = \bar{x}$. Подставим вместо 1 ее выражение в виде f(x,x,x) = 1, тогда получим, что $g(f(x,x,x),x) = \bar{x}$ или в виде формулы: $(xx \to x) \oplus x = \bar{x}$.
- 3) Получение &. Найдем полином Жегалкина для функции $f(x,y,z) = xy \to z$. СКНФ для нее имеет следующий вид: $\bar{x} \vee \bar{y} \vee z$. Удобно воспользоваться алгебраическим методом для нахождения полинома этой функции: $\overline{\bar{x} \vee \bar{y} \vee z} = \overline{x\,y\,\bar{z}} = x\,y\,\bar{z} \oplus 1 = x\,y\,z \oplus x\,y \oplus 1$. По лемме о нелинейной

функции имеем $xy = \overline{f(x,y,0)}$. Подставляя выражение константы 0 в виде суперпозиции, получим, что $\overline{xy} = f(x,y,g(f(x,x,x),f(x,x,x)))$ (обозначим правую часть этого выражения через A) или в виде формулы $\overline{xy} = xy \to ((xx \to x) \oplus (xx \to x))$. Наконец, применив выражение отрицания через суперпозицию функций исходной системы, имеем g(f(x,x,x),A) = xy. В формульном виде получим, что $(xx \to x) \oplus (xy \to ((xx \to x) \oplus (xx \to x))) = xy$. Таким образом, константы, отрицание и конъюнкцию выразили через функции системы G.

Пример 2.6.4. Выразить функцию $h = x \downarrow y$ через функции системы $G = \{f(x, y, z) = xy \rightarrow z, g(x, y) = x \oplus y\}.$

Решение. Выразим функцию h через конъюнкцию и отрицание: $h = x \cdot y$. Используя выражения для отрицания и конъюнкции через функции системы G, которые были получены в примере 2.6.3, получаем h = g(f(x, x, x), f(g(f(x, x, x), x), y, g(f(x, x, x), f(x, x, x)))), или в виде формулы: $h = (xx \to x) \oplus (((xx \to x) \oplus x)y \to ((xx \to x) \oplus (xx \to x))) = x \cdot y = x \downarrow y$.

Задачи

- **2.6.1.** Выяснить, полна ли система функций. Если полна, то проиллюстрировать поэтапное доказательство теоремы Поста, т. е. получить через суперпозицию функций из этой системы константы, отрицание и конъюнкцию.
 - 1) $\{x \rightarrow yz, x(y \leftrightarrow z), xy \oplus yz\};$
 - 2) $\{(xy \lor xz) \oplus yz, x \lor y, \overline{\overline{x} \to xy}, x \longleftrightarrow \overline{y}\};$
 - 3) $\{xy \lor xz \lor yz, xy \to \overline{z}, (xy \lor xz)(y \to z)\};$
 - 4) $\{xy \leftrightarrow xz, xy \rightarrow \overline{z}, x \leftrightarrow \overline{y}\};$
 - 5) $\{xz \lor xy \lor yz, (xy \lor xz) \to yz, \overline{xyz} \leftrightarrow xz\};$
 - 6) $\{x \leftrightarrow xz, xz \rightarrow xy, x \lor y, x \oplus y\};$
 - 7) $\{x \lor y, x \oplus y, x \rightarrow y, 0\}.$

- **2.6.2.** Выяснить, полна ли система A функций, заданных векторами своих значений:
 - 1) $A = \{f_1 = (0110), f_2 = (11000011), f_3 = (10010110)\};$
 - 2) $A = \{f_1 = (0111), f_2 = (01011010), f_3 = (011111111)\};$
 - 3) $A = \{f_1 = (0111), f_2 = (10010110)\};$
 - 4) $A = \{f_1 = (0101), f_2 = (11101000), f_3 = (01101001)\};$
 - 5) $A = \{f_1 = (1001), f_2 = (11101000)\};$
 - 6) $A = \{f_1 = (11), f_2 = (0111), f_3 = (00110111)\};$
 - 7) $A = \{f_1 = (10), f_2 = (00110111)\}.$
 - **2.6.3.** Из полной системы функций A выделить всевозможные базисы:
 - 1) $A = \{1, \bar{x}, xy(x \oplus y), x \oplus y \oplus xy \oplus yz \oplus xz\};$
 - 2) $A = \{0, x \oplus y, x \rightarrow y, xy \leftrightarrow xz\};$
 - 3) $A = \{0, 1, x \oplus y \oplus z, xy \oplus xz \oplus yz, xy \oplus z, x \vee y\};$
 - 4) $A = \{xy, x \lor y, xy \lor z, x \oplus y, x \rightarrow y\};$
 - 5) $A = \{xy \lor \overline{x}z, \overline{x}, x \to y, 0, x \oplus yz\}.$
 - **2.6.4.** Полна ли система $F = \{ f(\widetilde{x}^n), g(\widetilde{x}^n) \}$, если:
 - 1) $f \in S M$, $g \notin L \bigcup S$, $f \to g \equiv 1$;
 - 2) $f \notin T_0 \cup L$, $g \notin S$, $f \rightarrow g \equiv 1$;
 - 3) $f \in \overline{T}_0 \cup \overline{T}_1$, $g \in M T_1$, $f \to g \equiv 1$;
 - 4) $f \in SL T_0, g \in M T_0, f \to g \equiv 1$?
- **2.6.5.** Выяснить, полна ли система функций $A = \{f, g, h\}$, если выполнены следующие условия: $f \notin L \bigcup T_0 T_1, \ g \in M L, \ f \to g \equiv 1, \ f \lor h \equiv 1$?
- **2.6.6.** Привести примеры базисов, содержащих одну, две, три и четыре функции.
- **2.6.7.** Перечислить все различные базисы, содержащие только функции, существенно зависящие от двух переменных.
 - 2.6.8. Найти все функции Шеффера от двух переменных.
 - **2.6.9.** Доказать, что если $f \not\in T_0 \cup T_1 \cup S$, то f функция Шеффера.

- **2.6.10.** Сколько существует функций Шеффера от n переменных?
- **2.6.11.** Верно ли, что если $f \notin L \bigcup S \bigcup M$, то f полна?
- 2.6.12. Опровергнуть, что
 - 1) если $f \notin (T_0 \cup T_1) S$, то $f \in L \cup M$;
 - 2) если $f \in \overline{T_0}$ $\overline{T_1}$ \overline{M} , то f функция Шеффера;
 - 3) если $f \notin T_0 \cup S \cup M$, то $f \in L\overline{T_1} S \overline{M}$;
 - 4) если $f \notin L \bigcup S \bigcup M$, то f функция Шеффера.
- **2.6.13.** Выяснить, полна ли система функций A? В случае положительного ответа, привести пример полной системы функций из множества A.
 - 1) $A = P_2 (T_0 \cup T_1 \cup L \cup S \cup M);$
 - 2) $A = (M T_0) \cup (L S)$;
 - 3) $A = (S \cap M) \cup (L M);$
 - 4) $A = (L \cap T_0 \cap T_1) \cup (S (T_0 \cup T_1));$
 - 5) $A = (L \cap T_1) \cup (S \cap M);$
 - 6) $A = (L \cap T_1) \cup (S T_0);$
 - 7) $A = (M T_0) \bigcup (S L)$.
- **2.6.14.** Пусть f, g, h попарно различные функции, существенно зависящие от двух переменных. Будет ли полной система функций $\{\bar{x}, f, g, h\}$?
 - **2.6.15.** Верно ли, что $f \in [g]$ или $g \in [f]$?
 - 1) $f = x \oplus y$, g = xy;
 - 2) $f = x \oplus y$, $g = x \rightarrow y$;
 - 3) $f = x \rightarrow y$, g = xy;
 - 4) $f = x \rightarrow y$, $g = x \lor y$;
 - 5) $f = x \leftrightarrow y$, $g = x \lor y$;
 - 6) $f = x \leftrightarrow y$, g = xy;
 - 7) $f = x \rightarrow y$, $g = xy \oplus xz \oplus yz$;
 - 8) $f = x \oplus y$, $g = xy \oplus xz \oplus yz$;

- 9) $f = x \oplus y$, $g = xy \rightarrow z$;
- 10) $f = x \rightarrow y$, $g = xy \oplus z$;
- 11) $f = x \leftrightarrow y, g = xy \oplus z;$
- 12) $f = x \rightarrow y$, $g = \overline{x}$.

2.6.16. Доказать, что имеют место следующие включения:

1) $T_0S \subseteq T_1$;

2) $T_0T_1L\subseteq S$;

3) $M \subseteq T_0 \cup T_1$;

4) $M \subseteq T_0 \cup L$;

5) $MS \subseteq T_0$;

6) $L \subseteq T_0 \cup T_1 \cup S$.

2.6.17. Проверить, что если $U = P_2$ (множество всех функций алгебры логики), то на диаграмме Венна для системы замкнутых классов T_0 , T_1 , S, M, L пустыми будут в точности те клетки, которые в таблице 2.7 помечены символом \varnothing . Привести примеры функций каждого из остальных типов.

	T_0				$\overline{T_0}$				
	T_1		$T_1 \overline{T_1} T_1 $		$\overline{T_1}$				
L		Ø	Ø		Ø		Ø	Ø	M
		Ø	Ø		Ø			Ø	\overline{M}
\overline{L}			Ø	Ø	Ø	Ø	Ø	Ø	M
			Ø		Ø				\overline{M}
	S	\overline{S}	S	\overline{S}	S	\bar{S}	S	\overline{S}	

Табл. 2.7. Критериальная таблица Поста к примеру 2.6.17

2.6.18. Подсчитать число функций $f(\tilde{x}^n)$, принадлежащих классу A:

1) A = LS;

2) A = LSM;

3) $A = LST_0$;

4) $A = LST_0T_1$;

5) $A = MLST_0$;

6) $A = MLST_0T_1$;

7) $A = L\overline{S}T_0T_1$;

8) $A = LS\overline{T}_0\overline{T}_1$;

9) $A = \overline{L}ST_0T_1$;

10) $A = LT_0T_1$.

Глава 3. МИНИМИЗАЦИЯ БУЛЕВЫХ ФУНКЦИЙ

3.1. Сокращенная д.н.ф. и основные методы ее построения

Импликантом функции $f(\tilde{x}^n)$ называется такая элементарная конъюнкция K над множеством переменных $\{x_1, x_2, ..., x_n\}$, что $K \vee f(\tilde{x}^n) = f(\tilde{x}^n)$. Импликант K функции $f(\tilde{x}^n)$ называется **простым импликантом**, если после отбрасывания любой переменной получается конъюнкция, не являющаяся импликантом функции $f(\tilde{x}^n)$. Дизъюнкция всех простых импликантов функции $f(\tilde{x}^n)$ называется **сокращенной д.н.ф.** функции $f(\tilde{x}^n)$.

Пример 3.1.1. Из множества $A = \{xyz, xy\overline{z}, xy, xz, x\}$ элементарных конъюнкций выделить простые импликанты функции $f(x, y, z) = x(y \lor z)$.

Решение. Конъюнкция xyz является импликантом функции $f = x(y \lor z)$, так как $xyz \lor x(y \lor z) = x(y \lor z)$. Если из нее вычеркнуть переменную y, полученная конъюнкция xz снова будет импликантом, т. к. $xz \lor x(y \lor z) = x(y \lor z)$. Отсюда следует, что конъюнкция xyz не является простым импликантом. Аналогично можно показать, что конъюнкция $xy\overline{z}$ является импликантом и не является простым импликантом. Конъюнкции xy и xz являются простыми импликантами, т. к. после отбрасывания любой переменной получаются конъюнкции, не являющиеся импликантами. Конъюнкция x не является импликантом функции xy и xy не является импликантом функции y не является имплик

Рассмотрим теперь метод построения сокращенной д.н.ф. функции по ее к.н.ф. (метод Нельсона). На первом этапе в заданной к.н.ф. раскрываются скобки с использованием закона дистрибутивности. После этого на втором этапе удаляются переменные и конъюнкции с использованием правил $x\bar{x}K=0, xxK=xK, K_1\vee K_1K_2=K_1$.

Пример 3.1.2. Построить сокращенную д.н.ф. по заданной к.н.ф.:

$$f = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_3).$$

Решение. После раскрытия скобок получаем

$$f = x_1 \overline{x}_1 \vee \overline{x}_1 \overline{x}_2 \vee \overline{x}_1 x_3 \vee x_1 x_3 \vee \overline{x}_2 x_3 \vee x_3 x_3.$$

На следующем этапе получаем сокращенную д.н.ф. $f = \bar{x}_1 \bar{x}_2 \lor x_3$.

Пусть B^n — единичный n-мерный куб, вершинами которого являются всевозможные наборы $\widetilde{\alpha}^n=(\alpha_1,\alpha_2,...,\alpha_n)$, состоящие из нулей и единиц. Рассмотрим множество $N_f=\left\{\widetilde{\alpha}^n\in B^n\;\middle|\;f(\widetilde{\alpha}^n)=1\right\}$, т. е. множество таких вершин n-мерного куба B^n , на которых функция $f(\widetilde{x}^n)$ обращается в 1.

Пусть $\sigma_1, \sigma_2, ..., \sigma_k$ — заданные константы 0 или 1. (n-k)-мерной гранью n-мерного куба B^n называется множество всех вершин $\widetilde{\alpha}^n=(\alpha_1,\alpha_2,...,\alpha_n)$ куба таких, что $\alpha_{i_1}=\sigma_1,\alpha_{i_2}=\sigma_2,...,\alpha_{i_k}=\sigma_k$.

Легко понять, что множество N_K , соответствующее элементарной коньюнкции $K(\widetilde{x}^n) = x_{i_1}^{\sigma_1} \cdot x_{i_2}^{\sigma_2} \cdot ... \cdot x_{i_k}^{\sigma_k}$, представляет собой (n-k)-мерную грань куба B^n , состоящую из всех вершин $\widetilde{\alpha}^n = (\alpha_1, \alpha_2, ..., \alpha_n)$, для которых $\alpha_{i_1} = \sigma_1, \alpha_{i_2} = \sigma_2, ..., \alpha_{i_k} = \sigma_k$, а значения остальных n-k компонент могут быть выбраны произвольно.

Число k называется *рангом* этой грани. Грань ранга k содержит 2^{n-k} вершин. В частности, грань ранга n вырождается в вершину, а грань ранга n-1 называется *ребром* куба.

Грань N_K , содержащаяся в N_f , называется *максимальной* (относительно N_f), если не существует грани $N_{K'}$ такой, что:

- 1) $N_K \subseteq N_{K'} \subseteq N_f$;
- 2) Размерность грани $N_{K'}$ больше размерности грани N_{K} .

Пример 3.1.3. Пусть функция $f(\tilde{x}^3)$ задана вектором (10001011). Определить все максимальные грани множества N_f .

Решение. На рис. 3.1 отмечены вершины множества N_f ={000, 100, 110, 111}.

Вершины {000, 100} образуют максимальную одномерную грань, которой соответствует конъюнкция $\bar{x}_2\bar{x}_3$.

Вершины {100, 110} образуют максимальную одномерную грань, которой соответствует конъюнкция $x_1 \overline{x}_3$.

Вершины {110, 111} образуют максимальную одномерную грань, которой соответствует конъюнкция x_1x_2 .

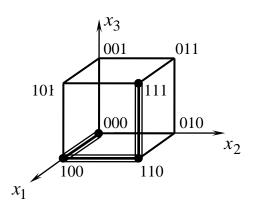


Рис. 3.1. Функция $f(\tilde{x}^3) = (10001011)$

Теперь заметим, что конъюнкция K, соответствующая максимальной грани N_K множества N_f , определяет простой импликант функции $f(\widetilde{\boldsymbol{x}}^n)$.

Для небольших значений n сокращенную д.н.ф. функции $f(\tilde{x}^n)$ можно найти , исходя из геометрического изображения множества N_f в единичном n мерном кубе B^n . С этой целью в кубе B^n отыскиваются грани максимальной размерности, целиком содержащиеся в множестве N_f , а затем составляется д.н.ф. из конъюнкций, соответствующих этим граням.

Пример 3.1.4. Пусть функция $f(\tilde{x}^3)$ задана вектором (00101111). Требуется найти ее сокращенную д.н.ф.

Решение. Отметим вершины множества $N_f = \{010, 100, 101, 110, 111)\}$ в кубе B^3 (см. рис. 3.2). Замечаем, что множество вершин {000, 100} образует одномерную грань (ребро) куба B^3 , которой соответствует конъюнкция $\bar{x}_2\bar{x}_3$. Множество вершин {100, 101, 110, 111} образует двумерную грань ранга 1, которой соответствует конъюнкция x_1 . Указанные грани являются максимальными, следовательно, получаем сокращенную д.н.ф. заданной функции в виде $f(\tilde{x}^3) = x_1 \vee \bar{x}_2 \bar{x}_3$.

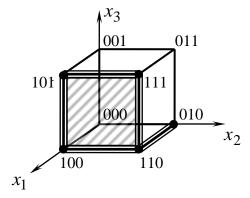


Рис. 3.2. Функция $f(\tilde{x}^3) = (00101111)$

Задачи

3.1.1. Из заданного множества A элементарных конъюнкций выделить простые импликанты функции f:

1)
$$A = \{x_1, \bar{x}_3, x_1x_2, x_2\bar{x}_3\}, f(\tilde{x}^3) = (0010\ 1111);$$

2)
$$A = \{x_1 \bar{x}_2, x_2 x_3, x_1 x_2 x_3\}, f(\tilde{x}^3) = (01111110);$$

3)
$$A = \{x_1 \bar{x}_3, x_1 x_3, x_2\}, f(\tilde{x}^3) = (0011\ 1011);$$

4)
$$A = \{x_1 \bar{x}_2, x_2 \bar{x}_3, \bar{x}_2, x_1 x_2 x_3\}, f(\tilde{x}^3) = (1110\ 1111).$$

3.1.2. Построить сокращенную д.н.ф. по заданной к.н.ф.:

1)
$$(x_1 \lor x_2 \lor \bar{x}_3)(\bar{x}_1 \lor x_2 \lor x_3)(\bar{x}_2 \lor \bar{x}_3)$$
;

2)
$$(x_1 \lor \bar{x}_2)(x_1 \lor x_2 \lor \bar{x}_3)$$
;

3)
$$(\bar{x}_1 \lor x_2 \lor \bar{x}_3)(x_1 \lor \bar{x}_2)(x_1 \lor x_2 \lor x_3)$$
;

4)
$$(x_1 \vee \bar{x}_2 \vee x_3)(\bar{x}_1 \vee x_2 \vee \bar{x}_3);$$

5)
$$(x_1 \vee \bar{x}_2)(x_1 \vee \bar{x}_3)(x_2 \vee \bar{x}_3)$$
.

3.1.3. Изобразив множество N_f функции $f(\widetilde{\boldsymbol{x}}^n)$ в \boldsymbol{B}^n , выделить максимальные грани и построить сокращенную д.н.ф.:

1)
$$f(\tilde{x}^3) = (11110100);$$

2)
$$f(\tilde{x}^3) = (01010011);$$

3)
$$f(\tilde{x}^3) = (11010011);$$

4)
$$f(\tilde{x}^3) = (11100111);$$

5)
$$f(\tilde{x}^4) = (0001011111 \ 101111);$$
 6) $f(\tilde{x}^4) = (1111100001001100);$

6)
$$f(\tilde{x}^4) = (1111100001001100);$$

7)
$$f(\tilde{x}^4) = (1110011000000111);$$
 8) $f(\tilde{x}^4) = (1111111111111111000).$

8)
$$f(\tilde{x}^4) = (111111111111111000)$$

3.1.4. Построить сокращенную д.н.ф. функции $f(\tilde{x}^n)$:

1)
$$f(\tilde{x}^3) = (01010111);$$

2)
$$f(\tilde{x}^3) = (11011011);$$

3)
$$f(\tilde{x}^3) = (10110000);$$

4)
$$f(\tilde{x}^3) = (11101111);$$

5)
$$f(\tilde{x}^4) = (0001101111 \ 011111);$$
 6) $f(\tilde{x}^4) = (001111011111111111);$

6)
$$f(\tilde{x}^4) = (00111101111111101);$$

7)
$$f(\tilde{x}^4) = (0011110111011110);$$
 8) $f(\tilde{x}^4) = (0010101111011111).$

8)
$$f(\tilde{x}^4) = (0010101111011111)$$

3.1.5. Найти длину сокращенной д.н.ф. функции $f(\tilde{x}^n)$:

1)
$$f(\tilde{x}^n) = x_1 \oplus x_2 \oplus ... \oplus x_n$$
;

2)
$$f(\tilde{x}^n) = (x_1 \lor x_2 \lor x_3)(\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) \oplus x_4 \oplus ... \oplus x_n;$$

3)
$$f(\tilde{x}^n) = (x_1 \lor x_2 \lor x_3)(\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)(x_4 \oplus ... \oplus x_n);$$

4)
$$f(\tilde{x}^n) = (x_1 \vee ... \vee x_k)(x_{k+1} \vee ... \vee x_n);$$

5)
$$f(\tilde{x}^n) = (x_1 \oplus ... \oplus x_k)(x_{k+1} \oplus ... \oplus x_n);$$

6)
$$f(\tilde{x}^n) = (x_1 \vee ... \vee x_n)(x_1 \vee ... \vee x_k \vee \bar{x}_{k+1} \vee ... \vee \bar{x}_n);$$

7)
$$f(\tilde{x}^n) = (x_1 \to x_2)(x_2 \to x_3)...(x_{n-1} \to x_n)(x_n \to x_1).$$

Литература

- 1. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по курсу дискретной математики. М.: ФИЗМАТЛИТ, 2006. 416 с.
- 2. Киселева Л. Г., Смирнова Т. Г. Логические функции. Учебнометодическое пособие, Нижний Новгород: издательство Нижегородского госуниверситета, 2005. 52 с.
- 3. Кузнецов О. П. Дискретная математика для инженера. СПб: издательство «Лань», 2004. 400 с.
- 4. Марков А. А. Введение в теорию кодирования. М.: Наука, 1982. 192 с.
- 5. Шоломов Л. А. Основы теории дискретных логических и вычислительных устройств. М.: Наука, 1980. 400 с.
- 6. Яблонский С. В. Введение в дискретную математику. М.: Наука, 2000. 384 с.

Оглавление

Глава 1. Функции алгебры логики	3
1.1. Основные понятия и определения	3
Задачи	9
1.2. Специальные представления булевых функций	13
Задачи	19
1.3. Двойственные функции. Принцип двойственности	21
Задачи	23
Глава 2. Замкнутые классы и полнота систем функций алгебры логики	24
2.1. Понятие функциональной полноты и замкнутости	24
Задачи	25
2.2. Классы функций, сохраняющих константы	26
Задачи	27
2.3 Класс самодвойственных функций	28
Задачи	30
2.4. Монотонность и класс монотонных функций	31
Задачи	34
2.5. Линейность и класс линейных функций	36
Задачи	38
2.6. Критерий полноты Поста и его применения	
Задачи	
Глава 3. Минимизация булевых функций	51
3.1. Сокращенная д.н.ф. и основные методы ее построения	51
Задачи	54
Литература	56

Лариса Георгиевна **Киселева** Татьяна Геннадьевна **Смирнова**

ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ В ПРИМЕРАХ И ЗАДАЧАХ

Учебно-методическое пособие

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского». 603950, Нижний Новгород, пр. Гагарина, 23.