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Preface  
 

This book refer to a university course delivered at the Lobachevsky University  
to students attending the Lectures on Mathematical Modelling in the frames of of the 
Master of Sciences Programmes. 

 The Lectures Notes devoted to modelling issues to show how the application 
of models to describe real world phenomena generates mathematical problems to be 
solved by appropriate mathematical methods.  

The models dealt with in these Lecture Notes are quite simple, proposed with 
tutorial aims, while relatively more sophisticated models arising in the real scientific 
researches. In the process of preparation of the given manual a plenty of remarkable 
university textbooks and special monographies has been used. In some cases, not 
hoping to surpass authors of these magnificent books in clearness and presentation of 
a statement, we used entirely the most successful (from our point of view) fragments 
of those or other sources with the indication on their authorship. In some cases we 
made insignificant updatings of the text (not changing its sense) for the best 
coordination of various parts of the manual. 
  The contents containes four chapters. The first and second Chapters proposes 
an introduction to the method of mathematical modelling – An Intuitive Introduction 
to Modelling  and Some technological details of the Mathematical Modelling (see  
[Bellomo N., De Angelis E., Delitala M., 2007], [Bellomo N., 2007], [Witelski T., 
Bowen M., 2015] et  al). The third Chapter proposes some material connected with 
Continuous Population Models for Single Species, the the fourth chapter – with 
Discrete Population Models for Single Species. Mathematical models of dynamics of 
two interacting biological populations is dedicated to the fifth chapter. Finally, the 
sixth chapter is devoted to Some Mathematical models of Neuroscience. 

In the course of drawing up the manual the author used a set of sources. All of 
them are brought in the list of references. Not always in the text exhaustive references 
to these sources are given: too frequent references to this or that source split up a 
statement of material and complicate his perception.The Lecture Notes look at 
application focussing on modelling and  computational issues, while the pertinent 
literature on analytic methods is brought to the attention of the interested reader for 
additional education.  

After the above introduction to the contents and aims of the Lecture Notes, a 
few remarks are stated to make a little more precise a few issues that have guided 
their redaction. 

 All real systems can be observed and represented at different scales by 
mathematical equations. The selection of a scale with respect to others belong, 
on one side, to the strategy of the scientists in charge of deriving mathematical 
models, and on the other hand to the specific application of the model. 

 Systems of the real world are generally nonlinear. Linearity has to be regarded 
either as a very special case, or as an approximation of physical reality. Then 
methods of nonlinear analysis need to be developed to deal with the application 
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of models. Computational methods are necessary to solve mathematical 
problems generated by the application of models to the analysis and 
interpretation of systems of real world. 

 Computational methods can be developed only after a deep analysis of the 
qualitative properties of a model and of the related mathematical problems. 
Different methods may correspond to different models. 

 Modelling is a science which needs creative ability linked to a deep knowledge 
of the whole variety of methods offered by applied mathematics. Indeed, the 
design of a model has to be precisely related to the methods to be used to deal 
with the mathematical problems generated by the application of the model. 
 
These Lectures Notes attempt to provide an introduction to the above issues. 

We hope, that the given Lectures Notes will help students to achieve deeper 
understanding of the method of mathematical modelling and its opportunities.  
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Unit 1. An Intuitive Introduction to Modelling 
 

“Everything should be made as simple as 
possible, but not simpler”. 

Albert Einstein 1 
 

“… not to produce the most comprehensive 
descriptive model, but to produce the simplest 
possible model that incorporates the major 
features of the phenomenon of interest”. 

Howard Emmons2 
 

1.1. Some basic notions and definitions 
 

The analysis of systems of applied sciences, e.g. technology, economy, biology 
etc, needs a constantly growing use of methods of mathematics and computer 
sciences. In fact, once a physical system has been observed and phenomenologically 
analyzed, it is often useful to use mathematical models suitable to describe its 
evolution in time and space. Indeed, the interpretation of systems and phenomena, 
which occasionally show complex features, is generally developed on the basis of 
methods which organize their interpretation toward simulation. When simulations 
related to the behavior of the real system are available and reliable, it may be 
possible, in most cases, to reduce time devoted to observation and experiments. 

Bearing in mind the above reasoning, one can state that there exists a strong 
link between applied sciences and mathematics represented by mathematical models 
designed and applied, with the aid of computer sciences and devices, to the 
simulation of systems of real world. The term “mathematical sciences” refers to 
various aspects of mathematics, specifically analytic and computational methods, 
which both cooperate to the design of models and to the development of simulations. 

Before going on with specific technical aspects, let us pose some preliminary 
questions: 
 

 What is the aim of mathematical modelling, and what is a mathematical 
model? 

 There exists a link between models and mathematical structures? 
 There exists a correlation between models and mathematical methods? 
 Which is the relation between models and computer sciences? 

 

Moreover:  
 

 Can mathematical models contribute to a deeper understanding of the real 
systems? 

 Is it possible to reason about a science of mathematical modelling? 
 

1 See [Einstein A., 1934], [Einstein A., 2015]. 
2 See, for example,  [Banerjee S., 2014; P.1].   



 Can education in mathematics take some advantage of the above mentioned 
science of mathematical modelling ? 

 

Additional questions may be posed. However, it is reasonable to stop here 
considering that one needs specific tools and methods to answer precisely to the 
above questions.  

Nevertheless an intuitive reasoning can be developed and some preliminary 
answers can be given: 
 

 Mathematical models are designed to describe physical systems by equations 
or, more in general, by logical and computational structures. 

 The above issue indicates that mathematical modelling operates as a science by 
means of methods and mathematical structures with well defined objectives. 

 Intuitively, it can be stated that education in mathematics may take advantage 
of the science of mathematical modelling. Indeed, linking mathematical 
structures and methods to the interpretation and simulation of real physical 
systems is already a strong motivation related to an inner feature of 
mathematics, otherwise too much abstract. Still, one has to understand if 
modelling provides a method for reasoning about mathematics. 

 

At this stage of consideration the following definition of mathematical model can 
be introduced. This concept needs the preliminary definition of two elements: 
 

 Independent variables, generally time and space; 
 State variables which are the dependent variables, that take values 
corresponding to the independent variables; 

 

Then the following concept can be introduced: 
 

 Mathematical model, that is a set of equations which define the evolution of 
the state variable over the dependent variables. 

 
The general idea is to observe the phenomenology of a real system in order to 

extract its main features and to provide a model suitable to describe the evolution in 
time and space of its relevant aspects. Bearing this in mind, the following definitions 
may be proposed: 
  

Independent variables 
 

The evolution of the real system is referred to the independent variables which, 
unless differently specified, are time t, defined in an interval ( ],[ 0 Ttt ∈ ), which refers 
the observation period; and space x , related to the volume V , ( Vx∈ ) which 
contains the system. 
 

State variable 
 

The state variable is the finite dimensional vector variable 
8 
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where  is deemed as sufficient to describe the evolution of the 
physical state of the real system in terms of the independent variables. 
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Mathematical model 
 

A mathematical model of a real system is an evolution equation suitable to define the 
evolution of the state variable u in charge to describe the physical state of the system 
itself. 
 

In order to handle properly a mathematical model, the number of equations and 
the dimension of the state variable must be the same. In this case the model is defined 
consistent: 
 

Consistency 
 

The mathematical model is said to be consistent if the number of unknown dependent 
variables is equal to the number of independent equations. 
 

This means that one has to verify whether an equation belonging to the model 
can be obtained combining the remaining ones. If this is the case, that equation must 
be eliminated. 
 

The real physical system may be interacting with the outer environment or may 
be isolated. In the first case the interactions has to be modelled.  
 

Closed and Open Systems 
 

A system is closed if it does not interact with the outer environment, while it is open if 
it does. 
 

The above definitions can be applied to real systems in all fields of applied 
sciences: engineering, natural sciences, economy, and so on. Actually, almost all 
systems have a continuous distribution in space. Therefore, their discretization, that 
amounts to the fact that u is a finite dimensional vector, can be regarded as an 
approximation of real system. 

In principle, one can always hope to develop a model which can reproduce 
exactly physical reality. On the other hand, this idealistic program cannot be 
practically realized considering that real systems are characterized by an enormous 
number of physical variables.  

So, every mathematical model contains some uncertainties connected with 
variables and processes, which were omitted in the process of construction of model 

The statement of mathematical problems need some data (e.g. the initial 
position of the system). Their measurements are affected by errors so that their 
knowledge may be uncertain. 

In some cases this aspect can be dealt with by using in the model and/or in the 
mathematical problems randomness modelled by suitable stochastic variables. The 

9 

 



10 

 

solution of the problem will also be represented by random variables, and methods of 
probability theory will have to be used.  

As rule mathematical models are stated in terms of evolution equations (for 
example – the system of ordinary differential equations). The above equations cannot 
be solved without complementing them with suitable information on the behavior of 
the system corresponding to some values of the independent variables. In other words 
the solution refers to the mathematical problem obtained linking the model to the 
above mentioned conditions. Once a problem is stated suitable mathematical methods 
have to be developed to obtain solutions and simulations, which are the prediction 
provided by the model. 
 
1.2. Modelling Scales and Representation 
 

As we have seen by the definitions proposed in Section 1.1, the design of a 
mathematical model consists in deriving an evolution equation for the dependent 
variable, which may be called state variable, which describes the physical state of the 
real system, that is the object of the modeling process. 

The selection of the state variable and the derivation of the evolution equation 
begins from the phenomenological and experimental observation of the real systems. 
This means that the first stage of the whole modeling method is the selection of the 
observation scale. For instance one may look at the system by distinguishing all its 
microscopic components, or averaging locally the dynamics of all microscopic 
components, or even looking at the system as a whole by averaging their dynamics in 
the whole space occupied by the system. 

For instance, if the system is a gas of particles inside a container, one may 
either model the dynamics of each single particle, or consider some macroscopic 
quantities, such as mass density, momentum and energy, obtained averaging locally 
(in a small volume to be properly defined: possibly an infinitesimal volume) the 
behavior of the particles. Moreover, one may average the physical variables related to 
the microscopic state of the particles and/or the local macroscopic variables over the 
whole domain of the container thus obtaining gross quantities which represent the 
system as a whole. The above approaches sometimes called, respectively, 
microscopic modelling and macroscopic modelling. 

As an alternative, one may consider the microscopic state of each microscopic 
component and then model the evolution of the statistical distribution over each 
microscopic description. Then one deals with the kinetic type (mesoscopic) modeling. 
Modelling by methods of the mathematical kinetic theory requires a detailed analysis 
of microscopic models for the dynamics of the interacting components of the system, 
while macroscopic quantities are obtained by suitable moments weighted by the 
above distribution function. 

Both observation and simulation of system of real world need the definition of 
suitable observation and modeling scales. Different models and descriptions may 
correspond to different scales. For instance, if the motion of a fluid in a duct is 
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observed at a microscopic scale, each particle is singularly observed. Consequently 
the motion can be described within the framework of Newtonian mechanics, namely 
by ordinary differential equations which relate the force applied to each particle to its 
mass times acceleration. Applied forces are generated by the external field and by 
interactions with the other particles. 

On the other hand, the same system can be observed and described at a larger 
scale considering suitable averages of the mechanical quantities linked to a large 
number of particles, the model refers to macroscopic quantities such as mass density 
and velocity of the fluid. A similar definition can be given for the mass velocity, 
namely the ratio between the momentum of the particles in the reference volume and 
their mass. Both quantities can be measured by suitable experimental devices 
operating at a scale of a greater order than the one of the single particle. This class of 
models is generally stated by partial differential equations. 

Actually, the definition of small or large scale has a meaning which has to be 
related to the size of the object and of the volume containing them. For instance, a 
planet observed as a rigid homogeneous whole is a single object which is small with 
respect to the galaxy containing the planet, but large with respect to the particles 
constituting its matter. So that the galaxy can be regarded as a system of a large 
number of planets, or as a fluid where distances between planets are neglected with 
respect to the size of the galaxy. Bearing all above in mind, the following definitions 
are given: 

 

Microscopic scale 
 

A real system can be observed, measured, and modeled  at the microscopic scale if 
all single objects composing the system are individually considered, each as a whole. 
 

Macroscopic scale 
 

A real system can be observed, measured, and modeled  at the macroscopic scale if 
suitable averaged quantities related to the physical state of the objects composing the 
system are considered. 
 

Mesoscopic scale 
 

A real system can be observed, measured, and modeled  at the mesoscopic (kinetic) 
scale if it is composed by a large number of interacting objects and the macroscopic 
observable quantities related to the system can be recovered from moments weighted 
by the distribution function of the state of the system. 
 

As already mentioned, microscopic models are generally stated in terms of 
ordinary differential equations, while macroscopic models are generally stated in 
terms of partial differential equations. In all cases they will generally be developed, 
unless otherwise specified, within the framework of deterministic causality 
principles. This means that once a cause is given, the effect is deterministically 
identified, however, even in the case of deterministic behavior, the measurement of 



quantities needed to assess the model or the mathematical problem may be affected 
by errors and uncertainty.  
 
1.3. Dimensional Analysis for Mathematical Models 
 

Frequently it is very conveniently to pass to the “dimensionless” form of 
equations. Parameters of dimensionless system of the equations usually represent 
some complexes describing dynamics of system and type of its behaviour (for 
example, as Reynolds number).This procedure should be generally, may be always, 
applied. In fact, it is always useful, and in some cases necessary, to write models with 
all independent and dependent variables written in a dimensionless form by referring 
them to suitable reference variables. These should be properly chosen in a way that 
the new variables take value in the domains  or ]1,1[ ]1,1[− .  

The above reference variables can be selected by geometrical and/or physical 
arguments related to the particular system which is modeled. Technically, let  be a 
certain variable (either independent or dependent), and suppose that the smallest and 
largest value of , respectively  and , are identified by geometrical or 
physical measurements; then the dimensionless variable is obtained as follows: 

vw

vw mw Mw

mM

mv

ww
www

−
−

= ,   ]1,0[∈w . 

In principle, the description of the model should define the evolution within the 
domain . When this does not occur, then the model should be critically 
analyzed. If  corresponds to one of the independent space variables, say it 
correspond to ,  and  for a system with finite dimension, then the said variable 
can be referred to the smallest and to the largest values of each variable in a similar 
way. In some cases, it may be useful referring all variables with respect to only one 
space variable, generally the largest one.  

]1,0[∈w
vw
vx vy vz

Some words more on the (more delicate) choice of the reference time. 
Technically, if the initial time is  and  is the real time, one may use the following: 0t vt

0

0

tT
ttt

c

v

−
−

= ,   0≥t . 

where generally one may have 00 =t . The choice of  has to be related to the actual 
analytic structure of the model and some characteristic features of the (physical) 
process.  

cT

 
1.4. Classiffcation of Models and Problems 
 

The above sections have shown that the observation and representation at the 
microscopic scale generates a class of models stated in terms of ordinary differential 
equations, while the macroscopic representation generates a class of models stated in 
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terms of partial differential equations. In details, the following definitions can be 
given: 
 

Dynamic and static models 
 

A mathematical model is dynamic if the state variable u depends on the time variable 
t. Otherwise the mathematical model is static. 
 

Finite and continuous models 
 

A mathematical model is finite if the state variable does not depend on the space 
variables. Otherwise the mathematical model is continuous. 
 

A conceivable (and very relative) classification can be related to the above 
definitions and to the structure of the state variable, as it is shown in the following 
table: 

 
Figure 1.4.1. Classification of mathematical models 

 
The above classification corresponds to well defined classes of equations. 

Specifically: 
 

 finite dynamic models correspond to ordinary differential equations; 
 continuous dynamic models correspond to partial differential equations. 

 

Static models, both finite and continuous, have to be regarded as particular 
cases of the corresponding dynamic models obtained equating to zero the time 
derivative. Therefore: 

 

 finite static models correspond to algebraic equations; 
 continuous static models correspond to partial differential equations with 
partial derivatives with respect to the space variables only. 

 
1.5. Critical Analysis 
 

Previous part of the text has been proposed as an introduction to modeling, 
classification and organization of mathematical models and equations. It has been 
stated that a deeper insight into mathematical aspects can be effectively developed 
only if a well defined class of models (and equations) is effectively specialized. Lets 
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discuss some ideas concerning model validation and complexity problems in 
modeling. 

 Referring to model validation one can state, in general, that a model can be 
regarded valid if it is able to provide information on the evolution of a real system 
sufficiently near to those obtained by experiments on the real system. So far a 
conceivable modeling procedure needs the development of the following steps: 
 

 The real system is modeled by suitable evolution equations able to describe the 
evolution of the dependent variables with respect to the independent ones. 

 Mathematical problems are generated by linking to the model all conditions 
necessary for its solution. These conditions should be generated by 
experimental measurements on the real system. 

 The above problems can be possibly solved and the output of the simulations is 
compared with the experimental observations. 

 If the distance (according to a concept to be properly defined in mathematical 
terms) between the above simulations and experiments is less than a critical 
value fixed a priori, then the model can be regarded valid, otherwise revisions 
and improvements are necessary. 

 
Unfortunately, the concept of validity is not universal, but it refers to the 

circumstances related to the above comparisons. Indeed, a model which is valid to 
describe certain phenomena, may loose validity with reference to different 
phenomena. Therefore development of models and their application needs a constant 
critical analysis which can go on following a systematic analysis and improvements 
of each model. 

Referring now to complexity problems in modeling, it is worth stating that this 
concept can be applied to the real system, as well as to the model and to the 
mathematical problems. In principle all systems of the real world are complex, 
considering that the number of real variables suitable to describe each system may be 
extremely large, if not infinite. Once applied mathematicians try to constrain the real 
system into a mathematical model, i.e. into a mathematical equation, then a selection 
of the variables suitable to describe the state of the real system is done. 

In other words, every model reduces the complexity of the real system through 
a simplified description by a finite number of variables. Enlarging the number of 
variables makes the model virtually closer to the real system. 

On the other hand this enlargement may cause complexity in modeling. In fact 
a large number of variables may need experiments to identify the phenomenological 
models related to the material behavior of the system, which may require high costs 
to be realized, and, in some cases, may be impossible. 

However, suppose that the applied mathematician is able to design a model by 
a large number of variables, then the related mathematical problem may become too 
difficult to be dealt with. Technically, it may happen that the computational time to 
obtain a careful solution increases exponentially with the number of variables. In 
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some cases, mathematics may not even be able to solve the above problems. The 
above concepts refer to complexity related to mathematical problems. Once more, 
this is a critical aspects of modeling which involves a continuous intellectual effort of 
applied mathematicians. 

It is plain that the attempt to reduce complexity may fall in contrast with the 
needs posed by validation. Let us anticipate some concepts related to validation of 
models. Essentially, a validation process consists in the comparison between the 
prediction delivered by the model and some experimental data available upon 
observation and measurement of the real system. If this distance is \small", then one 
may say that the model is valid. Otherwise it is not. 

The above distance can be computed by a suitable norm of the difference 
between the variable which defines the state of the model and the measurement 
obtained on the real system related to the same variable. Of course, different norms 
have to be used according to the different classes of models in connection to the 
different representation scales. 
 

Let us critically focus on some aspects of the validation problems and their 
interplay with complexity problems: 
 

 The validation of a model is related to certain experiments. Hence a validity 
statement holds only in the case of the phenomena related to the experiment. In 
different physical conditions, the model may become not valid. 

 The evaluation of the distance between theoretical prediction and 
measurements needs the selection of a certain norm which needs to be 
consistent not only with the analytic structure of the model, but also with the 
data available by the measurements. 

 The concept of small and large related to the evaluation of the deviations of the 
theoretical prediction from the experimental data has to be related both to the 
size (in a suitable norm) of the data, and to the type of approximation needed 
by the application of the model to the analysis of real phenomena. 

 Improving the accuracy (validity) of a model may be contrasted by the 
complexity problems concerning both modeling and simulations. In some cases 
accuracy may be completely lost due to errors related to complex 
computational problems 

 
Mathematical modeling constantly supports the development of applied 

sciences with the essential contribution of mathematical methods. In the past 
centuries, a systematic use of modeling methods have generated classical equations 
of mathematical physics, namely equations describing hydrodynamics, elasticity, 
electromagnetic phenomena etc. Nowadays, modeling refers to complex systems and 
phenomena to contribute to the development of technological sciences. 



Mathematical models already contribute, and in perspective will be used more 
and more, to the development of sciences directly related to quality of life, say, 
among others, biology, medicine, earth sciences. 

Modelling processes are developed through well defined methods so that it is 
correct to talk about the science of mathematical modelling. The first stage of this 
complex process is the observation of the physical system which has to be modelled. 
Observation also means organization of experiments suitable to provide quantitative 
information on the real system. Then a mathematical model is generated by proper 
methods to deal with mathematical methods. 

Generally a mathematical model is an evolution equation which can potentially 
describe the evolution of some selected aspects of the real system. 

The description is obtained solving mathematical problems generated by the 
application of the model to the description of real physical behaviors. After 
simulations it is necessary to go back to experiments to validate the model. As we 
shall see, problems are obtained linking the evolution equation to the so-called initial 
and/or boundary conditions. Indeed, the simplest differential model cannot predict 
the future if its behavior in the past and on the boundaries of the system are not 
defined. 

In summary we will quote the well-known statement (“the basic thesis of a 
method of mathematical modelling”) that “there is no best model, only better 
models”. 

There exist a lot of diagrams, which shows the essence (the basic idea) of the 
method of mathematical modelling.Below we show for an illustration some of them. 
Clearly, that is possible to repeat again the above mentioned basic thesis of a method 
of mathematical modelling – this time, certainly, it will be connected with those 
diagrams – “there is no best diagram, only better diagrams”. 

  

 
Figure 1.5.1. Process of mathematical modelling 
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Figure 1.5.2. Mathematical modelling cycle 

 

 
Figure 1.5.3. Methodology of Solution of real world problems3

 

                                                

   

Many other similar illustrations may be found in different books and in the  
materials in Internet. Figures 1.5.1 – 1.5.3  represens the essence of a such diagrams. 

Below one more similar diagram will be showed – at this time it will show in 
details the basic stages of the method of mathematical modelling – so to say, in 
technological (practical) aspect.  

 
3 See, for example, Milanovic I., Vukobratovic R., Raicevic V., An instance of a mathematical 
model in chemical kinetics // Int. J. Knowledge Engineering and Soft Data Paradigms. 2012. Vol. 
3, Nos. ¾. P. 294–308; P.299 
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Unit 2.  Some technological details of the Mathematical Modelling 
 
2.1. The General purposes of the Method of Mathematical Modelling. 
Statements and formulations of classics  
 

In order to explain once more the purpose of modelling, it is helpful to start by 
asking: what is a mathematical model? One answer was given by Rutherford Aris 
[Aris R., 1994]:  
 
“A model is a set of mathematical equations that … provide an adequate description 
of a physical system”. 
 

Dissecting the words in his description, “a physical system” can be broadly 
interpreted as any real-world problem – natural or man-made, discrete or continuous 
and can be deterministic, chaotic, or random in behaviour. The context of the system 
could be physical, chemical, biological, social, economic or any other setting that 
provides observed data or phenomena that we would like to quantify. Being 
“adequate” sometimes suggests having a minimal level of quality, but in the context 
of modelling it describes equations that are good enough to provide sufficiently 
accurate predictions of the properties of interest in the system without being too 
difficult to evaluate. 

Trying to include every possible real-world effect could make for a complete 
description but one whose mathematical form would likely be intractable to solve. 
Likewise, over-simplified provide accurate descriptions of the original problem. In 
this spirit, Albert Einstein supposedly said, “Everything should be made as simple as 
possible, but not simpler” [Einstein A., 2015], though ironically this is actually an 
approximation of his precise statement [Einstein A., 1934]. 

Many scientists have expressed views that systems may become 
mathematically trivial and will not be the subject of modelling. But in general 
expressed views about the importance of modelling and the limitations of models. 
Some other notable examples are: 

 

 In the opening of his foundational paper on developmental biology, Alan 
Turing wrote “This [mathematical] model will be a simplification and an 
idealisation, and consequently a falsification. It is to be hoped that the features 
retained for discussion are those of greatest importance …” [Turing A.M., 
1952]. 

 George Box wrote “…all models are wrong, but some are useful” [Box G.E.P., 
Draper N.R., 1987]. 

 Mark Kac wrote “Models are, for the most part, caricatures of reality, but if 
they are good, they portray some features of the real world” [Kac M., 1969]. 

 

Useful models strike a balance between such extremes and provide valuable 
insight into phenomena through mathematical analysis. Every proposed model for a 
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problem should include a description of how results will be obtained – a solution 
strategy. This suggests an operational definition:  
 
Model: a useful, practical description of a real-world problem, capable of providing 
systematic mathematical predictions of selected properties. 
 

Models allow researchers to assess balances and trade-offs in terms of levels of 
calculational details versus limitations on predictive capabilities. 

Concerns about models being “wrong” or “false” or “incomplete” are actually 
criticisms of the levels of physics, chemistry or other scientific details being included 
or omitted from the mathematical formulation. Once a well-defined mathematical 
problem is set up, its mathematical study can be an important step in understanding 
the original problem. This is particularly true if the model predicts the observed 
behaviours (a positive result). However, even when the model does not work as 
expected (a negative result), it can lead to a better understanding of which (included 
or omitted) effects have significant influence on the system’s behaviour and how to 
further improve the accuracy of the model.  

While being mindful of the possible weaknesses, the positive aspects of models 
should be praised, 
 
Models are expressions of the hope that aspects of complicated systems can be 
described by simpler underlying mathematical forms. 
 

Exact solutions can be found for only a very small number of types of 
problems; seeking to extend systems beyond those special cases often makes the 
exact solutions unusable. Modelling can provide more viable and robust approaches, 
even though they may start from counterintuitive ideas, “… simple, approximate 
solutions are more useful than complex exact solutions” [Borwein J.M., 
Crandall R.E., 2013]. 

Amazingly, but many – many years prior to this statement the similar reason 
was stated by the well-known Ukrainian educator and philosopher Grigory Savvich 
Skovoroda (22.11 (03.12).  1722 – 29.10 (09.10). 1794): «the God has created the 
world so, that everything, that is necessary, not so difficultly, and, that is difficult, not 
so necessary»4. 

Mathematical models also allow for the exploration of conjectures and 
hypothetical situations that cannot normally be de-coupled or for parameter ranges 
that might not be easily accessible experimentally or computationally. Modelling lets 
us qualitatively and quantitatively dissect problems in order to evaluate the 
importance of their various parts, which can lead to the original motivating problem 
becoming a building block for the understanding of more complex systems. Good 

 
4 Григорий Саввич Сковорода (22.11(03.12).1722 – 29.10(09.10).1794): «Бог создал мир так, что все, 
что нужно, не очень сложно, а все, что сложно, не очень нужно». 



models provide the flexibility to be systematically developed allowing more accurate 
answers to be obtained by solving extensions of the model’s mathematical equations. 
In summary, our description of the process is 

 
Modelling: a systematic mathematical approach to formulation, simplification and 
understanding of behaviours and trends in problems. 
 
2.2. Levels of Models 
 

Mathematical models can take many different forms spanning a wide range of 
types and complexity, 

 
At the upper end of complexity are models that are equivalent to the full first-
principles scientific description of all of the details involved in the entire problem. 
Such systems may consist of dozens or even hundreds of equations describing 
different parts of the problem; computationally intensive numerical simulations are 
often necessary to investigate the full system. 

At the other end of the spectrum are improvised or phenomenological “toy” 
Problems (which sometimes also described as ad hoc or heuristic models.) that may 
have some conceptual resemblance to the original system but have no obvious direct 
derivation from that problem. These might be only a few equations or just some 
geometric relations. They are the mathematical modelling equivalents of an “artistic 
impression” motivated or inspired by the original problem. Their value is that they 
may provide a simple “proof of concept” prototype for how to describe a key element 
of the complete system. As rule, heuristic models also describes (differentiate) at a 
qualitative level the possible (probable) and impossible phenomena (within the 
framework of the accepted and obviously formulated assumptions).  

Both extremes have drawbacks: intractable calculations in one extreme, and 
imprecise qualitative results at the other. Mathematical models exist in-between and 
try to bridge the gap by offering a process for using identifiable assumptions to 
reduce the full system down to a simpler form, where analysis, calculations and 
insights are more achievable, but without losing the accuracy of the results and the 
connection to the original problem. 

 
2.3. Classes of Real World Problems 
 

The kinds of questions being considered play an important role in how the 
model for the problem should be constructed. There are three broad types of 
questions:  
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 Evaluation questions [also called Forward problems]: Given all needed 
information about the system, can we quantitatively predict its other 
properties and how the system will function?  

 

 Detection questions [Inverse problems] [Banks H.T., Tran T.H., 2009]: If 
some information about a “black box” system is not directly available, can 
you “reverse engineer” those missing parameters?  

 

 Design questions [Control and optimisation problems]: Can we create a 
solution that best meets a proposed goal?  

 

There are many routes available to attack such questions that are typically 
treated in different areas of study. In this book we will present some methods for the 
research some problems of the first type of problems in the context of continuous 
systems and differential equations. 
 
2.4. Stages of the Modeling Process 
 

The modeling process can sometimes start from some toy problem and then 
seeks to validate the model’s connection to the original problem. However, this 
approach requires having a lot of previous experience with and background 
knowledge on the scientific area and/or relevant mathematical techniques in order to 
generate the new model. Many books offer the more formal schemes and the more 
systematic approach of starting with some version of the complete scientific problem 
statement and then using mathematical techniques to obtain reduced models that can 
be simplified to a manageable level of computational difficulty. 

The modeling process has two stages, consisting of setting up the problem and 
then solving it: 

 Formulation phase. In this phase, the problem is described using basic 
principles or governing laws and assumed relations taken from some 
branches of knowledge, such as physics, biology, chemistry, economics, 
geometry, probability or others. Then all side-conditions that are needed to 
completely define the problem must be identified: geometric constraints, 
initial conditions, material properties, boundary conditions and design 
parameter values. Finally, the properties of interest, how they are to be 
measured, relevant variables, coordinate systems and a system of units must 
all be decided on. 

 Solution phase. This phase is implemented under the assumption that the 
problem cannot be easily solved analytically or computed numerically, and 
hence does not need modeling. In this solution phase, mathematical modeling 
provides approaches to reformulating the original problem into a more 
convenient structure from which it can be reduced into solvable parts that can 
ultimately be re-assembled to address the main questions of interest for the 
problem.  



 
In some cases, the reformulated problem may seem to only differ from the 

original system at a notational level, but these changes can be essential for separating 
out different effects in the system. At the simplest level, “problem reduction” consists 
of obtaining so-called asymptotic approximations of the solution, but for more 
challenging problems, this will also involve approaches for transforming the problem 
into different forms that are more tractable for analysis or computation. 

The techniques described here are broadly applicable to many branches of 
engineering and applied science: biology, chemistry, physics, the geosciences and 
mechanical engineering, to name a few. We direct interested readers to books that 
present more detailed case studies of such problems in specific application areas. The 
above-mentioned two-step simulations are usually divided into several smaller sub-
steps. We have already mentioned the various diagrams describing the modeling 
(figures 1.5.1 – 1.5.3 represent the essence of a such diagrams). The more detailed 
modeling process is best illustrated in the following diagrammatic form5 (see fig. 
2.4.1). 
 

 
 

Figure 2.4.1. The more detailed modeling process – technological (practical) aspect 
 
The modelling process 
 

Stage 1: Real-world problem 
 

The problem statement should be very general and free of as much data as 
possible, as later stages of the modeling process will consider and gather what is 

                                                 
5  More in detail about this concept and  its appendices see in Mathematical modeling and the general 
mathematics syllabus. NSW Department of Education and Training.  University of Western Sydney. 
http://www.curriculumsupport.education.nsw.gov.au/secondary/mathematics/assets/pdf/s6_teach_ideas/cs_ar
ticles_s6/cs_model_s6.pdf  Accessed 02.04.2016. 
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needed. Often teachers will have to rewrite a typical textbook problem to reduce the 
initial information included. 
 
Stage 2: Make assumptions 

This is the most valuable part of the process and it should not be rushed. It 
consists of listing all the variables involved and then trying to simplify or modify the 
list. In this process, it becomes obvious that there is a need to obtain certain 
information that will constitute the initial conditions of the problem. 
 
Stage 3: Formulate mathematical problem 

The choice of mathematical model will depend upon the approach used by the 
teacher and the demands of the syllabus. If the class decides upon a model that does 
not match the teacher’s, then the teacher has a choice to either intervene (a structured 
approach) or to delay until the completion of one cycle of the modeling process. The 
teacher has the option of algebraically constructing the model with the class or 
providing a spreadsheet containing the model. 
 
Stage 4: Solve the mathematical problem 

This stage describes the process used by the students when applying a 
procedure to given data. Using the modeling process may mean a return to the initial 
assumptions in order to modify the problem being considered. 
 
Stage 5: Interpret the solution 

After obtaining their solutions, the students are directed back to the problem. 
They must check to ensure that they have answered the problem within the 
assumptions they have made. Interpretations made should make explicit the 
assumptions and initial conditions. This is an important step in helping students 
realise that solutions to problems are constrained by the context and are not easily 
transferable to other situations. 
 
Stage 6: Verify the model 

In this stage the strengths and weaknesses of the model are discussed. This 
involves reflecting upon the mathematics that has been used. The statement that “all 
models are wrong, but some are useful” is an important reminder of the dangers of 
oversimplification and of ignoring the underlying assumptions. Models should be 
evaluated in terms of the variables used and, more importantly, those omitted. 
 
Stage 7: Report, explain, predict 

This is a valuable part of the process, as students need experience in using 
language to express mathematical ideas. It is here that we reflect upon the quality of 
the students’ thinking. It should include documentation of the students’ progress 
through the stages of the cycle as well as their final predictions and answers. The 
structure of the modeling process provides a good organizing device for their report. 
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Unit 3. Continuous Population Models for Single Species 
 

3.1. Probably the first and maybe the simplest mathematical model of 
dynamics of biological populations is a well-known model, built in 1202 by the 
famous Italian mathematician Leonardo from Pisa (Fibonacci)6. It is believed that he 
was one of the most talented Italian mathematicians of the middle ages. Fibonacci 
played a prominent role in the transition of Europe to the decimal system and use of 
Arabic numerals. Particularly significant role in this process belongs to his work 
“Liber Abaci”, in which in addition to the examples of the practical use of new 
computing technology, made noticeable contribution in bookkeeping and accounting, 
calculate interests, transfer from one unit to another of weights and measures and 
other “commercial” applications of mathematics. The book contains the formulation 
and the solution of (highly idealized) problem about the growth of a hypothetical 
population of the rabbits, in which the author introduced some sequence of integers, 
now known as the Fibonacci numbers7. 

His father Guglielmo – the official of city of Pisa and famous trader (wholesale 
dealer), was appointed customs official the Borgias in North Africa. He directed that 
his son joined to him as assistant, and also for the purpose of completing his 
education. Leonardo began to make numerous business trips to the Mediterranean 
territory. Probably it is the latter explains the interest of Fibonacci to “economic” 
applications of mathematics. Anyway, it had known the work “Liber Abaci” was 
published after one of the journeys Fibonacci in Egypt. 

In addition to the “Liber Abaci”, Leonardo Fibonacci wrote two outstanding 
mathematical work: “Practica Geometricae” (1220), sacred geometry and 
trigonometry, and “Liber Quadratorum”, dedicated to the theory of Diophantine 
equations. 

In the Fibonacci's book “Liber Abaci” (“Book about Abaca”, or “the Book 
about the computations”), which second edition of 1228 year survived until the new 
time, contains the problem which can be formulated in the following way: 

 
“How many pairs of rabbits are born in one year from one pair, if the nature of 

rabbits is such that after the month a pair of rabbits give birth to another couple, and 
give birth to rabbits from the second month after their birth?” 

 
In this model the population, elements of which primary were the pair of 

rabbits (not individuals); thus, the population is subdivided into two groups (or 
subpopulations) of young and adult rabbits; these groups are characterized by their 
ability to produce offspring. Another interesting feature of this model – the age of 
individuals can take two values (“young” or “adult”). In this system those two 

 
6 Leonardo Pisano Fibonacci (1170 – 1250), or Leonardo Fibonacci, or simply Fibonacci.   
7 However, this sequence was long before that (not later than the VI century) already known to 
Indian mathematicians 



subpopulations coexists. It is interesting to note that the similar scheme of describing 
of the life cycle of “representative economic agent” may be found in the models with 
discrete time in the theory of economic growth (“the overlapping generations model”, 
or “Overlapping Generation Models”, “OLG – Models”). 

Lets choose in this problem as a time unit one month, and let us denote  the 
current population size (i.e. the number of pairs of rabbits) at the time 

tN
Z∈t , where 

 is the set of integers. Then, in accordance with the definition, the following 
relation is true: 
Z

 
21 −− += ttt NNN , 20 +≥ tt .                                         (3.1) 

 
Here  – initial value of time. Relation (3.1) is the difference (differential-

difference, recurrent) the equation describing the dynamics of this population. Note 
that since the problem was formulated to a very short period of time, then the 
equation (3.1) does not take into account the mortality of rabbits, so that, in a certain 
sense, the rabbits in Fibonacci immortal. 

0t

In order to determinate the unique solution of this problem (dynamics of this 
population) – that is, in order to uniquely define all elements of sequence 

,  – it is necessary to specify initial conditions },{
0tt tN Z∈ ,...}2,1,{ 0000

++≡ ttttZ
 

1    ,1 100
== +tt NN ,                                              (3.2) 

 
It is easy to check that the first elements of this sequence are the following 

numbers: 
 

 ... 377,  233, 144, 89, 55, 34, 21, 13, 8,  5,  3,  2, 1,  ,1 .           (3.3) 
 
Numeric sequence (3.3) is called “a sequence of Fibonacci”, and its elements – 

“the Fibonacci numbers”. For Fibonacci numbers are often used the designation 
, where },{ N∈nFn ,...}3,2,1{=N  is the set of natural numbers. 

Initial problem (3.1), (3.2) can be easily solved using standard methods (see, 
e.g., [Ferguson B. S., Lim G. C., 2003]); like every sequence defined by a linear 
recurrence with constant coefficients, the Fibonacci numbers have a closed-form 
solution. It has become known as “Binet's formula”, even though it was already 
known by Abraham de Moivre8. This representation for the Fibonacci numbers is 
given by: 

 
5

nn

n
BAF −

= ,     N∈n ,                                      (3.4) 

 
                                                 
8 See, for example, https://en.wikipedia.org/wiki/Fibonacci_number  Accessed 04.03.2016 

25 

 

https://en.wikipedia.org/wiki/Fibonacci_number


where 618,12)51( ≈+=A , 618,02)51( −≈−=B . However, the validity of the 
representation (3.4) can easily justify also using the method of mathematical 
induction.  

From the representation (3.4) it follows that the Fibonacci number  is the 
nearest next integer to the n  - th element  of a geometric progression, the first 
element of which is 

nF
nA

5A  and the denominator is equals to A , so 

 
5

1 n
nn AAF =≈ , N∈n . 

It is clear, that we have the following approximate representation  
 

1−≈ nn AFF ,   618,1≈= constA ,    N∈n .                         (3.5) 
 
The Fibonacci numbers have some very interesting properties and find 

applications in several branches of mathematics and its applications, for example, in 
the theory of chain (continuous fractions) and in the theory of optimal control. 

If we talk about models of population dynamics of populations, the next time 
of its appearance was on the turn of XVIII and XIX centuries the model of Thomas 
Robert Malthus (1766 – 1834). This model was published in 1798 and has gained 
very wide popularity.  

It is interesting to note that in 1805 Malthus was appointed professor of 
modern history and political economy of the College of Eastern India (East India 
College, Haileybury), and thus it becomes the first "academic economist" of England. 

The logic of the reasoning and conclusions of the works of Malthus T.R. is 
approximately as follows. Due to the biological characteristics of human population 
tends to increase exponentially according to the law (cp. (3.5)) 
 

 1−= nn MNN , N∈n ,                                             (3.6) 
 

where  1>M  is the denominator is a geometric progression.  
Thus, , . At the same time means of existence being increased by 
the law of arithmetical progression, so 

 0NMN n
n = N∈n

 
DСС nn += −1 , , 0>D N∈n .                                      (3.7) 

 
It is clear that . nDССn += 0

The comparison of (3.6) and (3.7) shows that the amount of funds of existence 
per capita (per capita) – “consumption” – changing in accordance with the formula 
 

0

0

NM
nDСc nn

+
= , 1>M ,  N∈n .                                   (3.8) 
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So, from (1.8) t follows immediately that , 0→nc ∞→n .  
On the basis of this result, Malthus predicted rapid lagging agricultural 

production to the needs of the rapidly growing population. Here is a quote: 
 

 “Taking the population of the world at any number, a thousand millions, 
for instance, … , the human species would increase in the ratio of 1, 2, 4, 8, 
16, 32, 64, 128, 256, 512, etc. and subsistence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. In 
two centuries the population would be to the means of subsistence as 512 to 
10; in three centuries as 4096 to 13, and in two thousand years the difference 
would be incalculable.” 
 
However, this prediction turned out to be wrong, and about 200 years after this 

prediction food production per capita has continued to grow. This process is halted 
only in the 80s of the twentieth century 

Despite the above the folly of his forecast , Malthus was right in the other – 
they were first formulated quite sober the idea that people's needs must be consistent 
with the real possibilities of production and Nature. This idea would, however, 
formulated in a very provocative form: 

 
“What enlightened classes in their desire to ensure the overall well-being, if 

the lower classes will continue to multiply like rabbits?” 
 
This statement has caused a public outcry, and the terms "Malthusian" and 

"Malthusianism" came to be regarded almost as a curse. 
 Nevertheless, it is necessary to note the undoubted merit of an Anglican pastor 

in the formulation of the question of the reasonableness of the development of 
European civilization on the basis of classical rationalism and the principle of 
“conquering nature”. 

Only 200 years later, in 1992, at the International Ecological Congress in Rio 
de Janeiro at the level of Heads of Government was proclaimed the principle of 
"sustainable development", affirming the inadmissibility of the unlimited and 
uncontrolled use of resources and pollution of the biosphere. Despite the criticisms of 
declarative and streamlining of the Congress decisions, as important as the fact of 
reviewing the approach to the development of civilization, and the wording of the 
total for the entire planet's development strategy. 

Let us return to the construction of a general model of “Malthusian type” of 
dynamics of population growth. Disregard of the internal characteristics of 
individuals - members of the population - and we will consider only the two "basic" 
processes which are characteristics of the biological nature of the population. This 
process of birth and death (mortality). The population is characterized by its strength 

)(tN  at  time ),[ 00
∞≡∈ tt tR . 
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For output equations of dynamics let us consider “the balance of births and 
deaths” for some period of time ],[ ttt Δ+ . By definition, the change   in the 
function 

NtΔ
)(tN  will be 

 
)()( tNttNNt −Δ+≡Δ .                                             (3.9) 

 
On the other hand, this change is determined by the processes of birth and 

death of individuals. It is natural to assume that quantity of acts of births (deaths) is 
greater for the longer the period of time and for the greater number of the population. 
Assume that both these processes are characterized by some functions and ),( tNB  
and ),( tND  (fertility function and mortality function, respectively) so that the 
number of births  and deaths BtΔ DtΔ  of individuals for the period of time  ],[ ttt Δ+  
are, respectively, 

 
)()(),( tottNtNBB Bt Δ+Δ=Δ , )()(),( tottNtNDD Dt Δ+Δ=Δ ,          (3.10) 

  

where  0
)(
→

Δ
Δ
t

top , 0→Δt , DBp ,= .  

In accordance with the biological sense of parameters, DBN ttt Δ−Δ=Δ , and 
it follows from (3.9) and (3.10) that we have the relation 

 
{ } )()(),(),()()( tottNtNDtNBtNttN Δ+Δ−=−Δ+ .                  (3.11) 

  
 From (3.11) when we get the differential equation 

 

{ } )(),(),()( tNtNDtNB
dt

tdN
−= , ),[ 00

∞≡∈ tt tR .                       (3.12) 

  
The function ),(),(),( tNDtNBtNM −≡  is usually called the Malthusian 

function. The following initial condition must be added  to the equation (3.12)   
 

0)( 000
>=

+=
NtN

tt
.                                                       (3.13) 

  
A property of populations identified by T. Malthus can be described as follows. 

Let the functions of fertility and mortality are constant values 0),( >= btNB  and 
0),( >= dtND  respectively. Then the equation (3.12) can be written in the form 

 

)()( trN
dt

tdN
= , ),[ 00

∞≡∈ tt tR ,                                    (3.14) 
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where 0>−≡ dbr  – Malthusian parameter. Equations (3.14), (3.13) implies that 
the population size is described by the formula 
 

)(
0

0)( ttreNtN −= , ),[ 00
∞≡∈ tt tR .                           (3.15) 

 
If we consider discrete time tnttn Δ+= 0 , we obtain for : )( nn tNN =

 
{ } nntr

n NeNN μ00 ≡= Δ , , 1>= Δtreμ N∈n ,                           (3.16) 
 
which corresponds to the concept of T. Malthus that population tends to increase 
according to the law of geometric progression. 
 3.2. Mathematical model (3.14) (further referred to as model of Malthus) 
reflects a very simplified picture of the dynamics of populations. Much more realism 
can be expected from the generalized models of the type (3.12). In models of this 
type as possible given the limited resources of the habitat of the populations, and the 
broad scope of the intraspecific interaction between individuals (in particular, 
intraspecific competition). Consider some of these models, not considering the 
possible dependence on time of the functions of fertility and mortality (and, 
consequently, Malthusian functions). In this case, equation (3.12) can be written in 
the form 

 

)()]([)( tNtNM
dt

tdN
= , ),[ 00

∞≡∈ tt tR ,                          (3.17) 

  
where )()()( NDNBNM −≡  – the Malthusian function. The initial condition (3.13) 
must  be added to the equation (3.17)   

At various times it has been proposed a number of expressions for Malthusian 
functions  that provide a greater agreement between the theoretical results with 
experimental data. Apparently, the most popular form of today function goes back to 
the works of P.F. Verhulst (Pierre François Verhulst, 28. 10. 1804, Brussels, Belgium 
– 15.02. 1849, Brussels, Belgium) and usually dates back to 1838 year. However, 
these works were actually forgotten for a long time. 

Only in the 1920s in the works of Pearl R. (Pearl, Raymond, 03.06.1879 - 
17.11.1940) and Reed L.J., (Reed, Lowell J., 1886 - 1966) it was found that the 
population dynamics of many natural populations of a limited environment is really 
quite well described by "logistical dependence", which is consistent with the work of 
P. Verhulst. In the works of these authors is essentially proposed as follows 
Malthusian function 

⎟
⎠
⎞

⎜
⎝
⎛ −=

K
NrNMVPR 1)( ,   0, >= constKr .                        (3.18) 

 

29 

 



Malthusian function (3.18) corresponds to the dynamics equation of the form 
 

)()(1)( tN
K

tNr
dt

tdN
⎟
⎠
⎞

⎜
⎝
⎛ −= ,  ),[ 00

∞≡∈ tt tR ,                          (3.19) 

 which is usually called the equation of Verhulst - Pearl - Reed. 
In (3.18), (3.19) the value 0>r  - analogue Malthusian parameter, and 0>K  - 

constant characterizing the habitat of the population. 
Note that equation (3.19) can easily be obtained from (3.17) under the 

assumption of constant fertility function (so, bNB ≡)(  where  – "natural fertility") 
and simple (linear) form of mortality function (so, 

b
NmND μ+=)(  where  - 

"natural mortality" and 
0>m

0>μ  - a parameter characterizing the mortality impact of the 
number (density) of the population, and it is easy to see that 0>−= mbr  and 

0>=
μ
rK . 

It is easy to establish that the solution of the problem (3.19), (3.13) is written as 
follows: 

 

]1[1
)(

)(0

)(
0

0

0

−+
=

−

−

ttr

ttr

e
K
N

eNtN , ),[ 00
∞≡∈ tt tR .                          (3.20) 

  
From the elementary analysis of stability of equilibrium states of the equation 

(3.19) it easy obtain that the nontrivial equilibrium state KN st =  is stable, and the 
trivial  state  – is  unstable (in the sense of Lyapunov A.M). It is obvious (in 
view of the representation (1.20)) that 

0=stN
KtN →)(  when  ∞→t ;  in such cases it is 

often talk about “saturation effect”. Thus, the equilibrium state is asymptotically 
stable in the sense A.M. Lyapunov. Therefore, the parameter is the value of the 
equilibrium population size at which the population is able to exist in a given area 
“infinitely long” period of time. In other words, it is such a population size that this 
habitat may “feed” or “withstand”. That is why the option is commonly referred to as 
the capacity of the habitat. 

The curve described by (3.20) for ),( ∞−∞=∈Rt , called “logistic curve” or 
“logistic dependence”. It is clear that for any initial conditions  the 

following inclusion has place 

),0(0 KN ∈

),0()( KtN ∈  for all, and 0)(
>

dt
tdN , R∈∀t . Using 

(3.19) is easily to calculate the second derivative 2

2 )(
dt

tNd , which has the form: 
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2

.                                 (3.21) 

 
It is clear that there exist such 21t  that the equality 2)( 21 KtN =  take place,   

so that, as follows from (3.21),  
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Thus, by virtue of (3.22), for 21tt <  the logistic curve is convex, and when 

21tt <  - concave. A point 21tt =  is a point of inflection. The general view of logistic 
curve is shown in Figure 3.1. 

 

 
Figure 3.1. The qualitative form of logistic curve 

 
Quantitative (in the broad sense) phenomenological theory of biological 

populations, growth and development should include the model and plant growth and 
development of organisms (as a specific form of cell populations). In addition to the 
representation (3.18) of Malthusian function )(NM  in the Verhulst - Pearl - Reed 
form there are many other, equally famous expressions, designed to give an adequate 
description of the growth and development of various biological structures. Here are 
some of them. 

Malthusian function of Gompertz B. (1825)  

⎟
⎠
⎞

⎜
⎝
⎛=

N
KrNM G ln)( ,   0, >= constKr .                        (3.23) 

and the equation of Gompertz B.. The last has the form: 
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The solution of the problem (3.24), (3.25), (3.13) has the form: 
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From (3.26) it is clear, that KtN →)(  when ∞→t  (“saturation effect”). 
Some another models. Model of Pütter A. (1920), Bertalanffy L., von (1960), 

Rosenzweig M. (1971) and Schoener N.W. (1972):   
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and the corresponding equation. The last has the form 
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The solution of the problem (3.27), (3.28), (3.13) has the form: 
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From (3.29) it is clear, that KtN →)(  when ∞→t  (“saturation effect”.). 
Goel N.S., Maitra S.C., Montroll E.W. (1971): 
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In this connection, it is natural to build general (in the mathematical sense) 

growth models. For example, in the works of Y.M. Svirezhev (see., e.g, [Svirezhev 
Yu.M., 1987, P.14]; see also [Svirezhev Yu.M., 1984] [Svirezhev Yu.M., 2008] ) 
there was proposed the following generalization of the logistic model . We write 
down the model of the dynamics of the population size (3.17) in the form 
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)]([)( tNF
dt

tdN
= , ),[ 00

∞≡∈ tt tR .                                 (3.31) 

  
Let the function , RR →⋅ +:)(F ),0[ ∞≡+R  - a sufficiently smooth function 

(for example, class 2C ). Then (3.31) is a generalized logistic (in the sense of 
Y.M. Svirezhev) if the following conditions are met: 

 
 There exist ),0( ∞∈K  that 0)()0( == KFF ; 
 We have the following inequalities 0)0( >=′ rF ; )0()( FNF ′<′ , ),0( ∞∈∀N . 

 
The population, which dynamics is described by the generalized logistic 

equation, called the generalized logistic population. The corresponding dynamics 
model may be called a generalized logistic model. 

It is useful to check that the set of formulated above conditions holds for the 
equation (3.17) with the Malthusian type functions (3.19), (3.24), (3.25) and (3.28). 
A similar approach to that described for the construction of the common growth 
models presented in [Carrillo M., 2003]. 

Lets briefly describe the approach of[Carrillo M., 2003] of characterization of 
Sigmoidal Growth. 

Growth is observed through the dynamic behavior of a particular variable, X, 

and the speed of growth can be measured through the growth rate of the variable, 
dt
dx , 

or alternatively through the relative growth rate, which takes the form 
dt
dx

x
1 . The 

simplest way to capture mathematically the dependence of the growth rate on the 
various social phenomena affecting the evolution of X is by means of an autonomous 
differential equation of the form 

 

)(xF
dt
dx

=                                                            (3.32) 

 
that consequently will be used to describe a growth model. We will understand that a 
sigmoidal growth experiences two different phases, the first of which is characterized 
by an exponential growth, next followed by an asymptotic growth, in such a way that, 
finally, a S-shaped curve is described. These characteristics are translated into 
analytical properties in the following manner: 

Definition: Given an increasing C2 function x(t), it is said to describe a 
sigmoidal growth if it has two horizontal asymptotes (upper and lower) and passes 
through a single point of inflection in its path. 

We can assume, without loss of generality, that the lower asymptote will take 
the value x = 0, whereas the upper asymptote will be denoted by x = L. 
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Now, we would like to know what specific model could be associated to a 
sigmoidal growth variable, x.  

Lets )(xF  has the following properties: 
 

 )(xF  is a continuous and differentiable function. 
 0)( >′ x , since X is monotonously increasing. F
 )(xF  presents a (single) maximum at the point ix . 
 0)0( =  and 0)( =F LF  (because Ltx

t
=

→∞
)(lim  and 0)( . lim =

−∞→
tx

t

 The improper integrals  

∫
ε

0 )(
1 dx
xF

  and  ∫
L

dx
xFμ )(

1 , ),0(, L∈με , 

           are both divergent. 
 

Then )(tx  describes a sigmoidal growth if and only if  )(tx  solves the  
differential equation (3.32)  with above mentioned properties.  

It is easy to see that the approach works [Svirezhev Yu.M., 1987] and [Carrillo 
M., 2003] are very close. 

 
Some problems for self study 

 
Problem 1.  Find the solution of the following initial-value problem for the 

equation of  Verhulst – Pearl – Reed (“logistic equation”):   
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Problem 2.  Find the solution of the following initial-value problem for the 

equation of Gompertz:  
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Problem 3. Find the solution of the following initial-value problem for the 

equation of Pütter A. – von Bertalanffy  L. –  Rosenzweig M. – Schoener N.W:  
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Problem 4. Find the solution of the following initial-value problem for the 
equation of Weibull W.:  
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. 

Problem 5. Many population models assume that an increase in population 
density has a negative effect on population growth. There is a class of population 
models, however, where an increase in population density stimulates population 
growth, especially at low population densities. This is called the Allee effect after the 
work of W.C. Allee in the nineteen thirties. A model that shows the Allee effect may 
have the following form. 

⎟
⎠
⎞

⎜
⎝
⎛

+
−−=

Nb
a

K
NrN

dt
dN 1                                                    (*) 

for positive Kbar ,,, . What are the equilibria and which are stable? How does the 
behaviour of solutions depend on the initial population density? How do you interpret 
the parameters in terms of population behaviour? 
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Unit 4. Discrete Population Models for Single Species 
 

We have already met with this type of equation – difference equations – it was 
the equation associated with the Fibonacci problem. 

4.1. Let us start with the basic properties of difference equations. It is 
sometimes more natural, when modeling the evolution of a population, to take into 
account not only the current situation, but also the past one: for instance, birth rate 
does not depend on the population size Nn, but rather on the sexually mature 
individuals. A way to incorporate the delay effect is to consider models like: 
 

Nn+1 = f(Nn,Nn−R) ,                                                              (4.1) 
 
where R (an integer) is the delay. We will study the stability of the steady state of 
these delay models. 
 
4.1.1 Case R = 1 
 
Equation (4.1) becomes: 
 

Nn+1 = f(Nn,Nn−1) .                                                            (4.2) 
 
Set Xn = col{Nn−1, Nn} . Equation (4.2) can be written: 
 

Xn+1 = F(Xn) ,                                                                 (4.3) 
with  
 

F (X) = col{Fx(x, y), Fy(x, y)} , X = col{x, y}, 
 

Fx(x, y) = y, Fy(x, y) = f(y, x) . 
 

A steady point of (3.3) is such that X∗ = col{x∗, y∗}  and X∗ = F(X∗)  with x∗ = y∗   
and x∗ = f(x∗, x∗). Note that x∗  is a steady point of (4.2). 

Let us set Σn = Xn − X∗  and linearize (3.3) about X∗ : 
  

Σn+1 = MΣn + o(Σn) , 
 
with 
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The eigenvalues of  M, given by (4.4),  satisfies equation  P(λ) = 0, where: 
 

P(λ) = λ2 − λ 
∗
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⎠
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⎝
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∂
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Xx
f − 

∗

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

Xx
f . 

The steady point X∗  is stable if the modulus of the eigenvalues of M are less than 1. 
In the case of general delay (R ≥ 1) the approach is the same as for R = 1.  
 
4.1.2. Comparison with the system without delay 
 

Let us consider the system without delay associated with the delay model (4.1):  
 

Nn+1 = f(Nn,Nn) .                                                          (4.5) 
 

The steady states of (4.1) and (4.5) are the same. A steady state of the system 
without delay is stable if: 

 1<⎟⎟
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∗∗ XX y
f

x
f .                                                 (4.6) 

 
 

4.2 Discrete logistic model 
 
The discrete-time logistic model is: 
 

⎟
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⎛ Δ
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Δ
Δ−Δ+

κ
ρ )(1)()())1(( nNnNnNnN . 

 
Let us make the changes of parameters: r = ρ∆ + 1, K = κ(ρ∆ + 1)/ρ∆ and set un 

= N(n∆)/K . We then obtain: 
 

un+1 = run(1 − un) .                                                      (4.7) 
 

This model have been introduced for modeling a population dynamics. From 
now on, we set: 

 
lr(x) = rx(1 − x) .                                                         (4.8) 

 
We need to work with a positive population size: we will thus assume in the 
following 0 ≤ r ≤ 4 and 0 < u0 < 1. We can easily check that the population size 
remains in the interval [0, 1]. 
 
4.2.1 Steady states 
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The sequence (4.7) has two steady states: 0 and  p = (r − 1)/r. 
 

 0 ≤  r < 1. The sequence un converges to 0. 
 1 < r < 3. The state 0 becomes unstable. The state p is stable. We check that 
the sequence un converges to p for any initial condition 0 < u0 < 1. 

 3 < r ≤ 4. The steady states 0 and p are both unstable. 
 

We will now study the case 3 < r ≤ 4. 
  

4.2.2 Cycles 
 
Consider the model where the iterative time step is 2: 
 

un+2 = lr(lr(un)) ≡ lr
2(un) . 

 
The steady states of the sequence un+2, apart from 0 and p, p = (r − 1)/r, are: 
 

r
Rrr

u
2

)3)(1(1 −+±+
=± .                                             (4.9) 

 
This shows the existence of a discrete cycle of period 2: if u0 = u+, then u2n = u+ and 
u2n+1 = u−. This is a first difference between continuous-time and discrete-time 
models. A one-dimensional continuous-time model has no periodic behavior; a 
discrete-time model can have a periodic behavior 
 
Definition 4.2.1 Cycles. 

Consider the iterative sequence un+1 = f(un). A cycle of period m is a sequence 
c0, c1, . . . , cm−1 such that: 

 
ci = f(ci−1) ,   fm(c0) = c0 ,   fi(c0) = c0  for i = 1, 2, . . . , m − 1 . 

 
Proposition 4.2.1 Stability of a cycle. 

A cycle is stable if  1)(
1

0
<∏ ′

−

=

m

i
icf . 

 
Indeed, we know that the stability of the sequence un+m = fm(un) about ci is given 

by the condition 1)()( <′
i
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It is possible to check up that the cycle (4.9) of period 2 of the discrete logistic 
map is stable if 3 < r < 1+√6 and unstable if 1+√6 < r ≤ 4. It is possible to prove the 
existence of an increasing sequence rn, with rn > 3 and lim rn = rc∼ 3, 828, such that 
the associated discrete logistic map has cycles of period 2n. To every rn, a small 
interval is associated, for which the cycle of period 2n is stable. It is possible to prove 
that the sequence rn satisfies: 

 

...6692.4lim
1

1 ≅=
−
−

+

−

∞→
δ

nn

nn

n rr
rr .. 

 
This constant δ is indeed an universal one ([Feigenbaum, M., 1978]). When r > rc, 
the cycles of period 2n become unstable and cycles of period k, 2k, 4k, . . ., with k 
odd,  appear. Note that a general result due to Sarkovsky ([Sarkovsky, A., 1964]) 
ensures that the existence of a cycle of period 3 implies the existence of cycles of 
period k, with k being an arbitrary integer. The existence of a cycle of period 3 
therefore plays a key-role, for the existence of very disturbed behaviors, called 
chaotic behaviors ([Li T., Yorke J., 1975]).  
 

4.2.3 Chaotic behavior 
 

The mathematical study of this case goes far beyond the scope of this book. In 
this book, we have no possibilities to give a survey of the general ergodic theory. We 
will only note that in the case of r ≥ 4 in the system сhaotic behavior are observed. 
The three following figures enables us to understand the apparition of cycles for the 
discrete logistic model (for r = 4; details see in [Istas J., 2005]). 

 

  
Fig. 4.1. Function lr(x) for r = 2.8 Fig. 4.2. Function lr

2(x) for r = 3.2 
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Unit 5. Mathematical models of dynamics 
of two interacting biological populations 

 
 

5.1. For the first time these mathematical models have been put into 
consideration in the work of A. Lotka9 in his research of biochemical reactions (1910 
– 1920) and later – of dynamics of biological systems (after 1925). Independently the 
dynamics of biological systems studied in the works V. Volterra10 (1926, 1931). In 
the first period the research of the dynamics of biological systems was concentrated 
on the mathematical models of population dynamics of  two homogeneous biological 
populations, interacting by the “predator – prey”. 

Let us first consider in more detail this case of two populations. The best-
known model of this type is the classic model of the dynamics of two interacting 
homogeneous populations – model “predator – prey” (model of Volterra – Lotka). 

We will give at first a formulation of rather general such model – model, 
suggested by G.F. Gauze11. This model includes the classical model of Volterra – 
Lotka as rather simple special case.  

Dynamics of interaction of two populations coexisting in the same territory – 
population herbivorous (which representatives are called as the victims or, more 
precisely, prey) and populations of predators is considered. We will denote also 
according to their number  and  in a time point )(1 tN )(2 tN ),[ 00

∞≡∈ tt tR . For lack 
of predators in this area of the loudspeaker of number of population of the preys it is 
described by the differential equation of interaction 

 

)()]([)(
111

1 tNtNM
dt

tdN
= , ),[ 00

∞≡∈ tt tR ,                               (5.1) 

  
where  – Malthusian function of herbivorous. It is necessary to add also to the 
equation (5.1) the following initial condition 

)(1 NM

 
0)( 0

101 0
>=

+=
NtN

tt
.                                                       (5.2) 

  
If food is available in “unlimited quantity” (that is isn't the limiting factor), 

then it is possible to consider that Malthusian function of herbivorous has the form 
, where . In that case “unlimited growth” of the number of 

population of the preys will be observed.  
11 )( rNM = 01 >r

                                                 
9 Lotka Alfred James (02.03.1880 – 06.12.1949). 
10 Volterra Vito (03.05.1860 – 11.10.1940).  
11 Gause Georgy Franzevich (27.12.1910 - 02.05.1986) 
 

40 

 



On the contrary, in the absence of the preys the existence of the isolated 
population of predators is impossible; dynamics of their number in a similar situation 
is described by the differential equation 

 

)()]([)(
222

2 tNtNM
dt

tdN
= , ),[ 00

∞≡∈ tt tR ,                               (5.3) 

  
where  – Malthusian function of predators, and, obviously, the following 
condition is satisfied 

)(2 NM

 
0)(2 <NM ,   ),0[ ∞≡∈∀ +RN .                                           (5.4) 

 
   It is necessary to add also to the equation (5.3) the following initial condition 
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+=
NtN

tt
.                                                       (5.5) 

 
In the simplest case, you can assume that 22 )( rNM −= , where  – Malthusian 
parameter of predators. 

02 >r

Taking into account interaction between the populations leads to a modification 
of the structure of the equations (5.1), (5.3). 

Let )(NV  – the number (biomass) of preys consumed an average of one 
predator per unit of time, if the quantity of population of preys is N . The function 

)(NV  is called trophic predator function (trophic function) or a functional response 
of the predator (functional response). The concept of a functional response was 
introduced  C.S. Holling12 (1959, 1965) (see, for example, [Swerezhev Yu.M, 
Logofet D.O., 1978]). 

Further, let a certain amount of (say, )1,0(∈k ) a predator biomass consumption 
is spent on the reproduction of its population, and the rest is spent on the maintenance 
of life and hunting activity. 

Then the system of differential equations "predator - prey" can be represented 
as follows: 

 

)()]([)()]([)(
21111

1 tNtNVtNtNM
dt

tdN
−= ,                                 (5.6) 

  

{ )()]([)]([)(
2122

2 tNtNkVtNM
d

}
t

tdN
+= .                                  (5.7) 

  

                                                 
12 Holling, Crawford Stanley, born 06.12.1930. 
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It is necessary to add also to the system of equations (5.6), (5.7) the initial 
conditions (5.2) (5.5) and (5.4) for the Malthusian predators function. 

The question of the existence of equilibrium states of the system (5.6) (5.7) 
(i.e., steady state describing the “coexistence” of population) leads to the 
consideration of the stationary variant of this system: 

 
0][][ *

2
*
1

*
1

*
11 =− NNVNNM ,                                                 (5.8) 

  
{ } 0][][ *

2
*
1

*
22 =+ NNkVNM .                                                 (5.9) 

  
If the system (5.6), (5.7) has a “positive” equilibrium state – the solution 

of the system (5.8), (5.9) with the property , , then the main 
interest will be the issue of stability (“sustainability”). 

},{ *
2

*
1 NN 0*

1 >N 0*
2 >N

Lets discuss a possible general form of the function )(NV . It is accepted to 
mark out some types of trophic functions which forms have some specific and 
characteristic features only of this type. The quantity of the such classes (types) of 
trophic functions is usually not really high. According to the tradition which is going 
back to classical works of Holling C.S. (1959, 1965, 1973), usually there is 
considered only  three (recently – four) such types (see also [Svirezhev Yu.M., 
Logofet D.O., 1978, S.95], [Svirezhev Yu. M., 1983], [Svirezhev Yu. M., 2008], 
etc.).  

In fig. 2.1 the qualitative type of diagrams  of the trophic I-IV functions of 
types (classification of Holling C.S.) is presented.   

The first type of trophic functions (or Holling type - I function) is presented by 
the only function. Its “canonical version" – a piecewise linear function with 
saturation occurring at values  where  0NN ≥ ∞<< 00 N  (see Figure 5.1 (a).). 

The fact that trophic function can with sufficient degree of accuracy be 
considered linear at very small quantities of population of the preys (victims) can be 
interpreted as follows: the predator is almost always hungry; so, predator doesn't 
come the saturation and all herbivorous met by him become his food. Thus, fairly 
following representation of trophic functions I of type: 
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0

NNV
NNN

NV
S

γ
,   0NVS γ≡ ,  0>= constγ , 00 >= constN .     (5.10) 

 
However often instead of definition (5.10) the “simplest version” of function 

)(NV  (which is formally “limit” of )(NV  when ∞→0N ) is considered. We will call 
such option of trophic functions I of type a functional response of Volterra – Lotka: 

 
NNV γ=)( ,   0>= constγ ,  +∈∀ RN .                                   (5.11) 
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So, )(NV  from (5.11) is linear for all +∈RN .  
The second type of trophic functions (or Holling type – II function) is presented 

in fig. 5.1(b). Holling has offered trophic functions of this kind for the description of 
the “not capable to training” predators (“silly predator”). It is considered that trophic 
II functions are characteristic of invertebrates.   

As well as in the case of trophic functions of I type, II function monotone 
increasing and concave. There is a horizontal asymptote that means that “the effect of 
saturation” takes place. 

Example of trophic function of II type is the functional response of Mikhaelis – 
Menten – Mono (Michaelis L., Menten M.I., 1913; Monod J., 1942, 1949). The 
Mikhaelis – Menten – Mono  function has the following representation 

 

Na
NVNV S

+
=)( , +∈∀ RN .                                     (5.12) 

 
Here 0>= consta  – “a semi-saturation constant” – the number of population 

with which function )(NV  reaches a half size of . SV
The another of trophic function of II type is the exponential functional 

response. This functional response describes Poisson process of search of production 
(cf. [Svirezhev Yu.M., 1987, S.17]) and it can be presented in the following form 

 
}1{)( aN

S eVNV −−= , +∈∀ RN ,  0, >= constca .                    (5.13) 
 
The third type of trophic functions (or Holling type – III function) is presented 

in fig. 5.1(c). This type of trophic functions has been offered by Holling for the 
description of the vertebrata showing rather difficult behavior, and, for example, 
“capable to training”. With the same share of convention, as well as above, one may 
say, that trophic III function is characteristic of  “cunning” and “bright” (“clever 
predator”). Typical example – a functional response of “sigmoid” type. This 
dependence may be represented in the following form 
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Similar properties are demonstrated by the following function 
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The fourth type of trophic functions (or Holling type – IV function) is 
introduced into consideration in works Taylor R.J. (1984) and Collings J.B. (1997) 
and includes also nonmonotonic trophic functions.   

The functional response like “inhibition” or trophic function of the Mono type 
– Holdeyna (Monod – Haldane function) [inhibition – suppression, control, braking 
can be an example of nonmonotonic trophic function (English); a synonym – 
prohibition]. This dependence may be represented as follows 

 

))((
)(

NbNa
cNNV

++
= , +∈∀ RN ,  0,, >= constcba .               (5.16) 

 
Qualitatively it is presented in fig. 5.1(d). 

 

Fig. 5.1. The qualitative form of graphs typical trophic functions 
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It should be noted that the used above various informal characteristics of 
predators (“stupid”, “not capable of learning”, “cunning” or “savvy”) should not be 
misleading. The forms of the trophic functions in fact also determined by the 
peculiarities of protection of victims of the strategy: if, for example, victims can hide 
in the shelter, reach the predator, the form of food-predator function is already to a 
large extent similar to type III. 



As noted in the papers of Svirezhev Yu.M. (1983, 2008) one of the most 
important environmental issues boils down to this question – whether the predator 
can regulate the population of victims? 

Abstracting from the potential ability of a population of victims for self-
regulation, it should be recognized that this issue is essentially linked exclusively to 
the form (kind of) predator trophic function. 

At the same time, as stated in Svirezhev Yu.M. (1983, 2008), “stupid” predator 
as a rule can not “regulate” the quantity of the population of victims – in the sense 
that the equilibrium state  is “globally instable”. In the case of “cunning” 
and “savvy” predator dynamics is much richer: there may be the stability of the 
steady state, and appearance in its neighborhood of a stable limit cycle. 

},{ *
2

*
1 NN

In that case, if the Malthusian features of preys and predators are the simplest 
form, so that  

 
NrNM 11 )( = , ; 01 >r NrNM 22 )( −= , ,                       (5.17) 02 >r

 
the system (5.6), (5.7) takes the following form 

 

)()]([)()(
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1 tNtNVtNr
dt

tdN
−= ,                                 (5.18) 

  

{ } )()]([)(
221

2 tNrtNkV
dt

tdN
−= .                                 (5.19)     

  
Further specification of the model (2.6), (2.7) can be achieved by selecting a 

type of explicit form of trophic function of the predator. 
If we use the simplest type of functional response – functional response of   

Volterra – Lotka (5.11), then from (5.18), (5.19) we obtain the following system of 
ordinary differential equations 

   

)()()()()()()(
211112111

1 tNtNtNrtNtNtNr
dt

tdN γγ −≡−= ,                (5.20) 

  

{ } )()()()()()(
21222221

2 tNtNtNrtNrtNk
dt

tdN γγ +−≡−= ,               (5.21) 

  
which is the classic predator – prey model of Volterra – Lotka. 
 
5.2. We investigate some qualitative properties of the model (5.20), (5.21). First of 
all, we note that the equation (5.20), (5.21) can also be written in the “more 
expressive” form. 
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{ } )()()(
1211

1 tNtNr
dt

tdN γ−= ,     { } )()()(
2212

2 tNrtN
dt

tdN
−= γ .             (5.22) 

 
 From (5.22) it follows easily that the following relationships are valid (those 
relationships may be obtained formally by  “simple integration”):  
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,                       (5.24) 
  
so that, in view of (5.23), (5.24), on the whole interval of existence of solutions of the 
system (5.20) (5.21) (or, equivalently, (5.22)) the following relations are valid: 
 

0)(0)( 01
0
11 ≥=⇔≥ tNNtN ;    ,         (5.25) 0)(0)( 01

0
11 ≤=⇔≤ tNNtN

 
0)(0)( 02

0
22 ≥=⇔≥ tNNtN ;    .        (5.26) 0)(0)( 02

0
22 ≤=⇔≤ tNNtN

 
 It is clear that the biological sense have only negative initial conditions 

++ ×∈ RR))(),(( 0201 tNtN . In this case, by virtue of (5.25) (5.26) on the whole 
interval of existence of solutions of (5.20), (5.21) we have the inclusion 
 

++ ×∈ RR))(),(( 21 tNtN ,  ,                            (5.27) ),[ 000
∞≡⊆∈ tJt t

T
t R

 
where  – the maximum interval of the existence of solutions of (5.20), (5.21). 
Only this situation and further consideration is limited. 

T
tJ
0

 First of all, consider the equilibrium state (5.20) – (5.22). It is clear that they 
are from the following algebraic system of equations 

 
{ } 01211 =− NNr γ ,     { } 0221 =− NrNkγ ,                                 (5.28) 

 
and the system of equations (5.28) has two solutions: trivial solution, and the solution 
that represents the greatest interest from a biological point of view, a positive solution 

2

2
1 γ

rN =∗ ,       
1

1
2 γ

rN =∗ .                                        (5.29) 

The most important feature of the system (5.20) – (5.22) is that it is a 
conservative system. This means that the system (5.20) – (5.22) has a first integral 

. We construct this first integral explicitly. It is easy to see that the 
system (5.20) – (5.22) is possible (in view of (5.29)) written in the form 

constNNW =),( 21
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{ })()()(
2211

1 tNNtN
dt

tdN
−= ∗γ ,     { }∗−= 1122

2 )()()( NtNtN
dt

tdN γ .           (5.30) 

 
Such representation of system (5.20) – (5.22) is very useful in subsequent 

constructions. Now consider the system of equations (5.30) in its symmetric form 
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Equation (5.31) can be easily integrated. Indeed, since we have 
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the relation takes place 
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where ++ ×∈ RR),( 21 NN , R∈c  – a constant determined by the initial conditions 
(5.2), (5.5), so that 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡= ∗∗

∗
∗∗

∗

2

0
2

2

0
2

21
1

0
1

1

0
1

12
0
2

0
1 lnln),(

N
N

N
NN

N
N

N
NNNNcc γγ .           (5.33) 

 
Note that (in view of (2.29)) we have the equality 
 

0),( 21211221 >+=+= ∗∗∗∗ rrNNNNс γγ .                          (5.34) 
  

It is easy to see that the first integral (5.32) can be represented in an equivalent form 
 

CcNXNY ln)(ln)(ln 21 ==− ,                                       (5.35) 
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Note that in (5.32), (5.35) constants R∈c  and +∈RC  are defined by the 
conditions (5.2) and (5.5), such that , 
and 

cNNcNNWtNtNW === ),(),())(),(( 0
2

0
1

0
2

0
10201

0>= ceC . Representation (5.35) implyies directly another very useful relation: 
 

)()( 21 NСXNY = .                                                 (5.36) 
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Equation (5.36) is very useful for the construction of trajectories of the system 

(5.20) – (5.22), 5.30). The corresponding graphic procedure was proposed by 
V. Volterra in his famous book (Volterra V. Leçons sur  la theorie mathématique de 
la lutte pour la vie. – Paris: Gauthier – Villars et Cie Éditeurs, 1931). It is presented in 
Fig. 5.2.  

 

 
Fig. 5.2. The graphic procedure of V. Volterra 

 
Note that the first integral (5.32) can also be builded immediately directly from 

a consideration of the system (5.20) – (5.22). 
In fact, we multiply (5.20) (or the first of the equations (5.22)) on 12 Nr , and 

the equation (5.21) (or the second of the equations (5.22)) – on 21 Nr , and then sum 
up the results. We get: 
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(5.37) 
2121211212122121 NrNrNrrrNrrr γγγγ −=+−−= . 

 
Further, multiply (5.20) on γ2, and the equation (5.21) on γ1, and then sum up 

the results. We get: 
 

=+−+−=+ )()( 21212122121121
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1
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dt

dN
dt

dN γγγγγγγγ  
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212121 NrNr γγ −= .                                               (5.38) 
 

From (5.37) and (5.38) we get: 

=+
dt

Ndr
dt

Ndr 2
1

1
2

lnln
dt
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dt

dN 2
1

1
2 γγ + .            (5.39) 

 
So, from (5.39) we have: 

{ } 0lnln 211221
12 =−−+ NNNN

dt
d rr γγ , 

 
and that is (5.32). 

As it follows from Fig. 5.2, the trajectory of the system are some kinds of the 
ovals. If we “turn” the third quadrant of Fig. 5.2, we get a qualitative picture of the 
trajectories of the system shown in Fig. 5.3 

 

 
Рис. 5.3.  Phase portrait of the system (5.18) – (5.20) 

  
The origin  and the point  ( 0,0O ) ( )∗∗

21 , NNG  are states of equilibrium of (5.20) 
– (5.22) (5.30). Lets define the type of equilibrium states. Linearization of  the system 
(5.20) – (5.22) in the neighborhood of these points gives us the following result. 

The origin .  The linearized system: ( 0,0O )
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The characteristic equation has the form 0))(( 21 =+− rr λλ , and its roots 
11 r=λ  and 22 r−=λ  – the real numbers of opposite signs. Point   – is a saddle 

point. The equilibrium state  is unstable. 
( 0,0O )

)( 0,0O
Point  ( )∗∗

21 , NNG . The linearized system has the form 
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γ
γξ
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212 tr
dt

td ξ
γ
γξ

= .                         (5.41) 

 
The characteristic equation has the form , and its roots  021

2 =+ rrλ ωλ i±=2,1 , 

21rr=ω  – the pure imaginary complex numbers. Point  ( )∗∗
21 , NNG  – is a singular 

point of center. The equilibrium state ( )∗∗
21 , NNG  is stable in the sense of A.M. 

 Lyapunov. 
As we know, the center – structurally unstable equilibrium state. It is stable, 

but not asymptotically stable (in the sense of Lyapunov A.M.) equilibrium. 
So, within the framework of the classical model of Volterra – Lotka the most 

interesting equilibrium state is structurally unstable. 
Consider very close to the classical model of Volterra – Lotka “generalized 

model of Volterra – Lotka”, which uses the Malthusian function of herbivorous 
species of more realistic form – it takes into account the ability of population of preys 
to self-regulation. Thus, we obtain a system of ordinary differential equations of the 
form 
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dt

tdN γ+−= ,                                    (5.43) 

 
where K – the capacity of the habitat herbivorous population. 

The stationary states of the system (5.42), (5.43) are determined from the 
relations 

01 211
1

11 =−⎟
⎠
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K
NNr γ ,    021222 =+− NNNr γ .                      (5.44) 

 
We shall assume that the natural from a biological point of view the condition 
Kr 22 γ<  is valid. Then the system of algebraic equations (5.44) has a unique 

equilibrium  state , , : },{ *
2

*
1 NN 0*

1 >N 0*
2 >N

 

50 

 



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∗

K
NrN

*
1

1

1
2 1

γ
,      

2

2
1 γ

rN =∗ .                                          (5.45) 

 
Lets denote this equilibrium ( )∗∗

21 , NNG . Using (5.45) we get  the following 
system of equations: 
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Let us introduce the following function of A.M. Lyapunov: 
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where 1ln)( −−≡Φ zzz , , +∈∀ Rz ++ ×∈∀ RR),( 21 NN , and parameters  and 

  are defined in (5.45). Then 
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so 
 

[ ] 0)()](),([ 2
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2121 ≤−−= ∗NtN
K

r
dt

tNtNdU γ .                                (5.50) 

 
Using the theorem of asymptotic stability of E.A. Barbashin – N. N. Krasovsky 

in this situation we may conclude that the equilibrium state is asymptotically stable in 
the sense of  A.M. Lyapunov. So, “the generalized model” at any values of 
parameters of system of the ordinary differential equations (5.42), (5.43) can't have 
periodic movements. At the same time, as it was already noted above, she is more 
realistic and describes the intraspecific competition arising because of limitation of 
resources; at the same time trophic function (a functional response) in models are the 
same. 

51 

 



5.3. The next level complexity presents the following generalization of the 
classical Volterra – Lotka model – the model of Holling – Tanner – May (Holling 
C.S., 1965; Tanner J.T., 1966, 1975; May R.M., 1974).  

In this model is used the “more realistic” description of interaction of 
populations. At creation of this model it was supposed that in it existence of periodic 
movements will be connected not with a special point like center (which is 
structurally unstable), but with existence of limit cycles.  

In this model a functional response of Mikhaelis – Menten – Mono is used as 
trophic function of a predator: 

1

11
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α
γ , 0,1 >αγ .                                   (5.51) 

  
The mathematical model of Holling – Tanner – May (HTM model) of 

dynamics of quantity of the biological populations has the following form: 
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Here  – Malthusian parameters of preys (0>ir 1=i ) and predators ( ). 2=i
The system (5.52), (5.53) may be presented also in the form 
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The rigorous consideration of the system (5.52), (5.53) (or (5.54)) shows that the 
phase portrait of this system may be presented as it indicated in the Fig. 5.4. 
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Fig. 5.4. Qualitative picture of trajectories of system (5.52), (5.53), (5.54)  

in the first quadrant of the plane 
 
The main problem – the problem of existence of the limit cycles in this model 

– has the positive solution based on the Theorem of Andronov – Hopf (bifurcation of 
Andronov – Hopf). 

Some other models – generalizations of the classical Volterra – Lotka model. 
Their highly general form may be written as: 
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The partial cases of this general model are Leslie – Gower model (Leslie P.H., 

Gower J.C., 1960) 
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Rosenzweig – May model (Rosenzweig M., 1971, May R.M., 1972)   
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t
tdN tNc−−+−= γ 220, γ<r                        (5.60) <

 and so on. 
Even more general view is presented in two widely known works of 

A.N. Kolmogorov (Kolmogoroff A.N., 1936; Kolmogorov A.N., 1972).  
Kolmogorov's model of dynamics of two interacting populations is the 

following system of the differential equations: 
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dt
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= ,                                    (5.61) 
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Theorem (Kolmogorov A.N., 1936, 1972).  
Let functions  , , ),( 211 NNK ),( 212 NNK ++ ×∈ RR),( 21 NN , are continuous 

with the first partial derivatives. Let, further, inequalities would hold 
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and, besides, there are real numbers ),0(,, ∞∈CBA , CB > , such that equalities 

; ; 0),0(1 =AK 0)0,(1 =BK 0)0,(2 =CK  take place. 
Then the model (5.61), (5.62) has in the first quadrant equilibrium state and 

either it is asymptotically stable equilibrium state, or, in opposite case, in its vicinity 
there exist a stable limit cycle. 

 
Some problems for self study 

 
Problem 1.  Try to study the solution of the following Leslie – Gower model 

(Leslie P.H., Gower J.C., 1960) 
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Problem 2.  Try to study the solution of the following Rosenzweig – May 

model (Rosenzweig M., 1971, May R.M., 1972) 
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tdN tNc−−+−= γ 220, γ<r                        (5.60) <
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Unit 6. Some Mathematical models of Neuroscience 
 
6.1. Some historical and terminological comments 
 

This unit is devoted to description of some basic elements of Neuroscience. 
Neuroscience is currently one of the most fast growing scientific fields. This is 
largely due to recent advances in experimental techniques and associated methods for 
analysis of “big data”. The main aim of this part – to show how mathematical models 
and their analyses are contributing to understanding of some biological problems 
connected with studies of brain and central nervous system. This section is largely 
based on the materials of a review article [Holmes P., 2014]. 

Mathematical treatments of the nervous system began in the mid 20th century. 
An early example is Norbert Wiener’s “Cybernetics,” published in 1948 and based on 
work with the Mexican physiologist Arturo Rosenblueth. He also discussed the 
relationship between digital computers (then in their infancy) and neural circuits, a 
theme that John von Neumann subsequently addressed in a book “The Computer and 
the Brain” (1958). In developing cybernetics, Wiener drew on von Neumann’s earlier 
works in analysis, ergodic theory, computation and game theory, as well his own 
studies of Brownian motion (so called Wiener processes).  

Books of Wiener and  von Neumann were directed at the brain and nervous 
system in toto. The first cellular-level mathematical model of a single neuron was 
developed in the early 1950s by the British physiologists Hodgkin and Huxley. This 
work, which won them the Nobel Prize in Physiology in 1963, grew out of a long 
series of experiments on the giant axon of the squid (Loligo).  

Now their pioneering work on  mathematical neuroscience has grown into the 
new scientific discipline. Description of this science may be found in set the lecture 
courses, textbooks, review articles, books etc. “The number of mathematical models 
must now exceed the catalogue of brain areas by several orders of magnitude” 
[Holmes P., 2014; P. 203]. 

These models can be of two broad types: empirical (also called descriptive or 
phenomenological), or mechanistic. The former ignore (possibly unknown) 
anatomical structure and physiology, and seek to reproduce input–output or stimulus–
response relationships of the system under study.  

Mechanistic models attempt to describe structure and function in some detail, 
reproducing observed behaviors by appropriate choice of model components and 
parameters and thereby revealing mechanisms responsible for those behaviors.  

Models can reside throughout a continuum from molecular to organismal 
scales, and many are not easily classifiable, but one common feature is nonlinearity. 
Unlike much of physical science and engineering, biology is inherently nonlinear.  

For example, the functions describing ion channels opening in cells in response 
to transmembrane voltage increase or characterizing neural firing rate dependence on 
input current are typically bounded above and below, and often modeled by 
“sigmoids” (a sigmoid function is a mathematical function having an “S” shape 



(sigmoid curve). Often, sigmoid function refers to the special case of the logistic 
function13.). 

The basic components of the nervous system are neurons = electrically active 
cells that can generate and propagate signals over distance. These signals are action 
potentials (APs, or spikes)14.  

Structurally, neurons come in many shapes and sizes, but all share the basic 
features of a soma or cell body, dendrites: multiply branching extensions that receive 
signals from other neurons, and an axon, a cable-like extension that may also be 
branched, along which APs propagate to other neurons15. The connections between 
axons and dendrites are called synapses, and they may be electrical, communicating 
voltage differences, or chemical, releasing neurotransmitters upon the arrival of an 
AP from the presynaptic cell. Functionally, neurons are either excitatory or 
inhibitory, tending to increase or depress the transmembrane voltage of postsynaptic 
cells to which they connect.  

 
6.2. The Components: Neurons, Synapses and the Hodgkin–Huxley Equations 
 

As noted above, following years of beautiful and painstaking experiments 
reported in an impressive series of papers (in the period 1949 - 1952), Hodgkin and 
Huxley created the first mathematical model for the AP. This work gained them a 
Nobel prize in 1963, along with J.C. Eccles. 

They used the giant axon of a squid. The cell’s size allowed them to thread a 
silver wire through it, equalizing voltages along the axon, thus removing spatial 
variations and allowing them to describe its dynamics in terms of nonlinear ordinary 
differential equations (ODEs): 

 

 
 
 
 
 
 
(6.1) 

                                                 
13 https://en.wikipedia.org/wiki/Sigmoid_function  

14  Abbreviations: HH = Hodgkin–Huxley equations for the generation and propagation of a single 
action potential; AP, or spike = action potential; DD process = drift-diffusion process; SPRT = 
sequential probability ratio test.  

15  Biologists refer to dendrites and axons as processes: confusing terminology for a mathematician! 
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The figure 6.1. shows an equivalent circuit diagram for the giant axon of the 
squid. She was the basis for the mathematical description of the giant axon of the 
squid. The result of the constructions of Hodgkin and Huxley is the following system 
of ODE (6.1). 
 

 
Fig. 6.1. Equivalent circuit for the giant axon of squid 

 
The coefficients of this system are quite complicated: 

 

 
 
 
 
(6.2) 

To emphasize the equilibrium potential n∞(v) at which n remains constant, and 
the time scale τn(v), the gating equations may be rewritten as follows: 

 

 
 
(6.3) 

with analogous expressions for m and h. 
 

6.3 Two-Dimensional Reductions of HH 
 

There are two ways to simplify Hodgkin-Huxley equations. Those are: 
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 approach of  Krinsky – Kokoz (1973) and, independently, Rinzel (1985);  



 approach of  FitzHugh – Nagumo (FN). 
 
In the first approach, we obtain the following system differential equations: 

 
This reduction to a planar system can be made rigorous by use of geometric 

singular perturbation methods. 
The study of this model (in the first approach) leads to interesting conclusions. 

It is, in particular, about the existence (for certain values of the parameters) stable 
limit cycle (see. Fig. 6.2). 

 

 
Fig. 6.2. Phase planes of the reduced HH equations 

 
In the second approach, we obtain the following system differential equations: 

 
Timescales are normally chosen so that τv  « τr = O(1) to preserve the relaxation  

oscillation with fast rise and fall in v.  
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The study of FizHugh – Nagumo model also leads to interesting conclusions. 
Phase portrait on the plane of the FizHugh–Nagumo system of equations is presented  
at  Fig. 6.3. 



 

 
Fig. 6.3. Phase portrait of the FizHugh – Nagumo system 

 
Currently, we have achieved significant success in the construction and study 

of mathematical models. Of course, much remains unexplored problems. In the 
[Holmes P., 2014] listed some problems that now seem most relevant. These include: 

• Further development of the theory and analytical methods for hybrid 
dynamical systems, especially for (large) networks of integrate-and-fire 
cells.  

• Better descriptions of, and methods for extracting macroscopic activity 
states in averaging over large cell populations.  

• Nested sets of models for simple tasks, fitted to electrophysiological and 
behavioral data.  

• Further use of time scale separation in creating and analyzing models of 
cognitive dynamics.  

• Analyses of iterative learning algorithms as dynamical systems. 
 

Some problems for self study 
 
Problem 1. In some cases pulses (spikes) propagation may be described by the 
Fitzhugh – Nagumo  type  system of equations  

( ) yxx
dt

tdx
−−= 21)(ε ,  ξ−= x

dt
tdy )( , 

where 0>ε  is a (small) parameter and R∈ξ  is a critical parameter (to be chosen). 
Try to investigate this mathematical model (remark: it is the singularly perturbed 
system of ordinary differential equations). 
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Appendix 
 
In this chapter we review some facts of the basic mathematical theories which 

are frequently used in the real researches. We have included some of the qualitative 
theory of ordinary Differential Equations and Calculus of One and Several Variables,  
needed elsewhere in the theory of ordinary Differential Equations. The material, 
described in the present appendix, is based on corresponding sections of some known 
monographies and university textbooks. The listed below books may be used for a 
deeper studying of the corresponding subject: [Elaydi S.N., 2005], [Guckenheimer J., 
Holmes P., 1990], [Hirst K.E., 2006], [Istas J., 2005], [Kuznetsov Y.A., 1998], 
[Shilnikov L.P., 2003], [Wiggins S., 1990].  
 
A.1 Ordinary differential equations 
 

Let I be an interval of the form [t0, T], [t0, T) or [t0,+∞). Let f  be a continuous 
function from Rm into Rm and let y0 ∈ Rm. We are looking for a continuous 
differentiable function y, defined from I into Rm, such that, for every t ∈ I: 

 
y′ (t) = f(y(t)) , y(t0) = y0 .                                              (A.1) 

 
The equation (A.1) is a first order differential equation. Let us recall that a p-

order equation like  
 

z(p)(t) = φ(z(t), z′ (t), . . . , z(p−1)(t)) , 
 
is amenable into a first order equation like (A.1) by the transformation y1(t) = z(t), 
y2(t) = z′ (t), . . ., yp(t) = z(p−1)(t). 
 

Theorem A.1.1 Cauchy-Lipschitz. If the function f satisfies the Lipschitz 
condition: 

|f(y) − f(z)| ≤ L|y − z| , 
for all (y, z) ∈ R2m, then the problem (A.1) has a unique solution. 
 

Definition A.1.1 Trajectory. A trajectory is the set {y(t), t ∈ I}, where y is a 
solution of (A.1). 

 
Definition A.1.2 Stability. Let I = [t0,+∞[. A solution ψ of (A.1) is called a 

stable solution if, for all ε > 0, there exists δ > 0 such that, for any solution φ of (A.1) 
satisfying: 

|φ(t0) − ψ(t0)| ≤ δ , 
 
we have, for all t ≥ t0, 

|φ(t) − ψ(t)| ≤ ε . 
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Moreover if we have limt→+∞|φ(t) − ψ(t)| = 0, then we say that the solution ψ is 
asymptotically stable. 
 

We are interested in the steady states, defined by: 
 

f(y∗) = 0 . 
 

The problem (A.1) with initial condition y(t0) = y∗ admits the solution y(t) ≡ y∗. 
Therefore, we will speak, with a minor abuse of language, of the stability of y∗. The 
following results concern the stability of the solution near a steady state y∗. Without 
loss of generality, we will assume that y∗ = 0. 
 
A.1.1 Stability when m = 1 
 

Assume that (A.1) takes the form: 
 

y′ (t) = ay(t) + g(y(t)) , 
 
where g(y) = O(|y|1+ε), ε > 0, as y → 0. Then: 
1. a > 0. 0 is unstable. 
2. a < 0. 0 is asymptotically stable. 
 
A.1.2 Global behavior when m = 1 
 

Let us consider the ordinary differential equation: 
 

y′ (t)  = f(y(t)) , 
 
with initial condition y(t0) = y0. The qualitative study of the trajectory is done the 
following way. 
 

1. Assume f(y0) < 0. Denote, when it exists, y_ = sup{y ≤ y0, f(y) = 0}. The 
trajectory coming from y0 cannot come back to y0; this is forbidden by the 
Cauchy – Lipschitz Theorem that ensures the uniqueness of the solution. For 
the same reason, the  trajectory is not allowed to cross the point y_. The 
trajectory remains into the interval [y_, y0]. On this interval [y_, y0], the 
function f is negative. The derivative of the function y is therefore negative. 
Function y is decreasing and bounded. Function y converges to a limit as t → 
+∞. This limit has to be a steady point. If y_ does not exist, we show that the 
trajectory converges to −∞ as t → +∞ with the same arguments. 
2. Assume f(y0) > 0. The same arguments prove that the trajectory converges, 
as t → +∞, to the smallest zero of function f that is greater than y0, when it 



exists. Else, the trajectory converges as t → +∞ t0 +∞. 3. Assume f(y0) = 0. 
This is a steady point and the trajectory remains on this point. 

 

Especially, an oscillating or asymptotically oscillating behavior is not possible 
in one dimension. 
 

A.1.3 Stability when m = 2 
 

Local behavior of a linear system. 
 

Consider the linear system: 
 

y′1 = ay1 + by2  ,  y′2 = cy1 + dy2  .                                      (A.2) 
 

Let A be the matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A . 

 

This matrix is sometimes called the stability matrix. Assume det(A) = 0. Let λ, µ the 
eigenvalues of A. These eigenvalues can be real or complex numbers. If λ = α+iβ (α, 
β real numbers, β = 0) is a complex number, then µ = α − iβ is the other eigenvalue. 
There exists a real non-singular matrix T such that J = TAT−1 has one of the following 
forms: 
 

 
The local behavior near (0, 0) and the usual terminology are given by the 

following figures. 
 

1. Case A.3   a) λ < 0;   b) λ > 0. 
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(a) Stable proper node (b) Unstable proper node 

Fig. A.1. Stable and Unstable proper nodes 
 

2. Case A.4  a) µ < λ < 0;  b) 0 < µ < λ. 
 

  
(a) Stable node (b) Unstable node 

Fig. A.2. Stable and Unstable nodes 
 
3. Case A.5     a) λ < 0;  b) λ > 0. 

 

  
(a) Stable improper node (b) Unstable improper node 

Fig. A.3. Stable and Unstable improper nodes 
4. Case A.6. 

 

64 

 



 
Fig. A.4. Saddle point 

 
5. Case A.7   a) α < 0, β < 0;    b) α > 0, β < 0. 
6. Case A.8   a) β < 0;   b) β > 0. 
 

  
(a) Stable focus (b) Unstable focus 

Fig. A.5. Stable and Unstable focus (“spiral”) 
 

 

  
(a)  (b)  

Fig. A.6. Centre (elliptic fixed point) 
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Fig. A.7. Classification of equilibria  and their associated eigenvalues 
 
Local behavior of a non-linear system 
 

Consider the non-linear system:  
 

y′1 = ay1 + by2 + g1(y1, y2) ,  y′2 = cy1 + dy2 + g2(y1, y2) .         (A.9) 
 

Set 2
2

2
1 yyr += . Assume the existence of ε > 0 such that, near (0, 0), we have 

g1(y1, y2) = O(r1+ε), g2(y1, y2) = O(r1+ε) and such that ∂g1/∂y2  and ∂g2/∂y1  exist and are 
continuous on a neighborhood of (0, 0).  

The local behavior of the non-linear system (A.9) can be deduced from the 
local behavior of the associated linear system (A.2). 

 

1. A node for A.2 remains a node for A.9 and keeps the same stability. 
2. A proper node for A.2 remains a proper node for A.9 and keeps the same 
stability. 
3. An elliptic fixed point for A.2 becomes an elliptic fixed point or a node 
(stable or unstable) for A.9. 
4. If A.2 is an unstable improper node, then every trajectory of A.9 converges 
(or keeps away from) to the origin with an angle of 0, π/2, π or 3π/2 with the 
axis of x; the stability is kept. 
5. If A.2 is a saddle point, then there exists a trajectory converging to the origin 
with an angle of 0, one converging to the origin with angle of π, the other 
keeping away from the origin. 
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A.1.4 Global behavior when m = 2 
 
So far, we only considered the local behavior of the differential equations near the 
steady state. These behaviors have been given when m = 2, but can be easily 
generalized when m > 2. We will now give some global properties. We must keep in 
mind that these global properties are not available when m > 2 anymore. 

Consider the following system: 
 

y′1 = f1(y1, y2) ,  y′2 = f2(y1, y2) . 
 

Assume that f = Col(f1, f2) is defined and continuous on an open bounded 
domain D of R2. Recall that a point y∗  such that f(y∗) = 0 is called a steady state and 
that a point such that f(y∗) = 0 is called a regular point. 
 

Definition A.1.3 Limit point. 
A point Q is a limit point of the trajectory C if there exists a sequence tn, with 

limn→+∞tn = +∞, such that (y1(tn), y2(tn)) converges to Q as n → +∞. The set of limit 
points Q of C is denoted by L(C). 
 

Theorem A.1.2 Poincare-Bendixson. 
Assume C to be contained in a closed subset K ⊂ D. If L(C) only contains 

regular points, then 
1. either C = L(C) and C is a periodic trajectory; 
2. either L(C) is a periodic trajectory. We say then that C is a limit cycle. 

 

Theorem A.1.3 Classification of limit trajectories. 
Assume C being contained in a closed subset K ⊂ D. Assume that D only 

contains a finite number of steady states, then: 
1. either L(C) is reduced to a unique steady point, and C converges to this 
steady point as t → +∞; 
2. either L(C) is a periodic trajectory; 
3. either L(C) contains a finite number of steady states and a set of trajectories, 

each of them converging to a steady state as t → +∞. 
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