Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

С.А. Кирюшин Т.Д. Муранова

Практикум по дисциплине «Материально-техническое обеспечение предприятий торговли и общественного питания» Часть II

Учебно-методическое пособие

Рекомендовано методической комиссией Института экономики и предпринимательства для студентов, обучающихся по направлению подготовки 38.03.06 «Торговое дело» (бакалавриат)

УДК 658.27 ББК 65.40я7 К-43

Кирюшин С.А., Муранова Т.Д. Практикум по дисциплине «Материально-техническое обеспечение предприятий торговли и общественного питания». Часть 2: Учебно-методическое пособие. - Нижний Новгород: Нижегородский госуниверситет, 2019. – 33 с.

Рецензент: руководитель отдела технического обеспечения ООО «METRO Cash & Carry» **И.А. Иванов**

Учебно-методическое пособие содержит необходимые сведения, условия и алгоритмы решения задач по материально-техническому обеспечению предприятий торговли и общественного питания машинами формовки, измельчения перемешивания И пищевого выпаривания И также торговым, нагревательным, сушки, теплообменным, холодильным, пищеварочным паропроводящим И оборудованием. В пособии приводятся подробные решения типовых задач.

Учебно-методическое пособие предназначено для студентов Института экономики и предпринимательства ННГУ им. Н.И. Лобачевского, обучающихся по направлению 38.03.06 «Торговое дело» (бакалавриат).

Ответственный за выпуск: председатель методической комиссии ИЭП ННГУ, к.э.н., доцент Едемская С.В.

УДК 658.27 ББК 65.40я7

© Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 2019

СОДЕРЖАНИЕ

Организационно-методический раздел5
§1. Материально-техническое обеспечение оборудованием для формовки
пищевого сырья9
1.1. Материально-техническое обеспечение котлетоформовочной машиной . 9
1.2. Расчет количества холодных напитков, хлеба, кондитерских изделий и
закупаемой продукции для оптимальной загрузки оборудования торговой
компании
§2. Материально-техническое обеспечение торговым оборудованием 14
2.1. Материально-техническое обеспечение горками для выкладки
непродовольственных товаров торговой компании
2.2. Расчет установочной и демонстрационной площади горки торговой
компании
2.3. Расчет эффективности использования площади торгового зала
супермаркета16
2.4. Расчет эффективности использование площади торгового зала под
размещение торгового оборудования в супермаркете
§3. Материально-техническое обеспечение оборудованием для
измельчения и перемешивания пищевого сырья
3.1. Материально-техническое обеспечение молотковой дробилкой
3.2. Материально-техническое обеспечение открытой турбинной мешалкой 19
§4. Материально-техническое обеспечение оборудованием для
выпаривания и сушки
4.1. Материально-техническое обеспечение оборудованием для
выпаривания
4.2. Материально-техническое обеспечение оборудованием для сушки 21
§5. Материально-техническое обеспечение холодильным оборудованием
торгового предприятия
5.1. Материально-техническое обеспечение холодильной установкой для
охлаждения и замораживания пищевых продуктов

5.2. N	Материально-техническое обеспечение парок		не пароком	прессионной
холодил	ьной установкой	•••••		23
§6. Ma	атериально-техническое	обеспечение	торгового	предприятия
пищевар	очным и паропроводящи	м оборудование	ем	25
6.1. M	атериально-техническое	обеспечение	пищеварочн	ым котлом
торговог	го предприятия	•••••		25
6.2. Ma	атериально-техническое	обеспечение	паропроводом	торгового
предпри	ятия	•••••		26
Критери	и оценивания выполненн	ых практически	их заданий	29
Список	литературы			31

Организационно-методический раздел

Учебно-методическое пособие «Практикум ПО дисциплине «Материально-техническое обеспечение предприятий торговли общественного питания» разработано для его использования в качестве вспомогательного материала при подготовке обучающихся к практическим занятиям ПО дисциплине «Материально-техническое обеспечение предприятий торговли и общественного питания» бакалавриата направления 38.03.06 «Торговое дело». Дисциплина «Материально-техническое обеспечение предприятий торговли и общественного питания» посвящена изучению структуры материально-технического обеспечения предприятий торговли общественного питания, механизации погрузочнопроцессов, классификации мебели И разгрузочных торгового оборудования, основ планирования материально-технического обеспечения торговых предприятий основными видами оборудования и мебели, а также расчету необходимо оборудования для предприятий общественного питания.

Цель освоения дисциплины является - формирование у обучающихся необходимых знаний в соответствующих областях деятельности для обеспечения эффективной коммерческой деятельности, необходимых в профессиональной деятельности бакалавров по направлению подготовки 38.03.06 «Торговое дело». По итогам изучения курса обучающиеся получают целостную систему профессиональных знаний в сфере материально-технического обеспечения предприятий торговли и общественного питания различного типа, а также возможность оценивать состояние материально-технической базы предприятия и осуществлять мониторинг в области развития торговой техники и оборудования.

Задачами дисциплины являются:

– создания комфортных условий труда специалистов торгового дела;

- изучение состава и оценки материально-технической базы предприятий торговли и общественного питания;
 - механизация погрузочно-разгрузочных работ на предприятии;
 - идентификация торгово-холодильного оборудования;
- принятие решений по выбору необходимого количества, вида торгово-технологического оборудования;
 - прогнозирование развития торговой техники.

Результаты обучения по данной дисциплине представлены в таблице 1.

Таблица 1 - Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ПК-2 способностью осуществлять управление торгово-технологическими процессами на предприятии, регулировать процессы хранения, проводить	знать: виды, технические характеристики, правила эксплуатации различных видов торгового оборудования уметь: грамотно эксплуатировать различные виды холодильного оборудования, оборудования для расчетов с покупателями, измерительного оборудования, мебели, инвентаря, средств защиты
инвентаризацию, определять и минимизировать затраты материальных и трудовых ресурсов, а также учитывать и списывать потери	товаров и другими видами оборудования владеть: навыками управления торговотехнологическими процессами на предприятии с помощью имеющихся средств и оборудования, определения и минимизации затрат материальных и трудовых ресурсов на основе проведения расчетов по показателям материально-технической базы предприятия
ПК-7 способностью организовывать и планировать материальнотехническое обеспечение предприятий, закупку и продажу товаров	знать: основы планирования материально- технического обеспечения, методику подхода к выбору торгового оборудования уметь: планировать материально-техническое обеспечение предприятия, осуществлять закупку необходимо торгово-технологического оборудования, мебели, инвентаря владеть: методиками расчета и выбора требуемого количества торгово-технологического оборудования

Изучение дисциплины «Материально-техническое обеспечение предприятий торговли и общественного питания» необходимо для дальнейшего изучения таких дисциплин, как: «Мерчендайзинг в торговле»,

«Организация, технология и проектирование предприятий», «Организация предпринимательской деятельности в общественном питании» и др.

Изучение дисциплины строится на основе сочетания лекций с проведением семинаров, расчетных практических занятий, а также самостоятельной работой обучающихся.

Практические занятия проводятся по основным разделам предмета. На практических занятиях обучающийся приобретает навыки решения производственных задач и ситуаций, работы с нормативной документацией и справочной литературой.

В качестве средств контроля за качеством учебного процесса предусматривается использование контрольных тестов, устных опросов и решение задач.

В ходе обучения преподавателем используются как репродуктивные и объяснительно-иллюстративные методы обучения, так и активные методы обучения. Последние связаны с принципом проблемности в обучении, и предполагают использование активного обучения и мотивируют к познавательной деятельности.

Активные методы обучения, предлагаемые для обучения обучающихся дисциплине: учебные дискуссии, эвристические беседы (беседа с серией вопросов, проблемное изложение материала, самостоятельная поисковая деятельность).

Используемые формы обучения: общегрупповая (при проведении лекционных, семинарских занятий), индивидуальная (при контроле самостоятельной работы обучающегося, при проведении практических занятий).

В данном учебно-методическом пособии представлены алгоритмы решения задач по выбору оборудования для предприятий торговли и общественного питания по шести блокам:

Материально-техническое обеспечение оборудованием для формовки пищевого сырья.

- Материально-техническое обеспечение торговым оборудованием.
- Материально-техническое обеспечение оборудованием для измельчения и перемешивания пищевого сырья.
- Материально-техническое обеспечение торгового предприятия оборудованием для выпаривания и сушки.
- Материально-техническое обеспечение холодильным оборудованием торгового предприятия.
- Материально-техническое обеспечение торгового предприятия пищеварочным и паропроводящим оборудованием.

По каждому блоку в учебно-методическом пособии представлены:

- задачи;
- формы для проведения расчетов;
- методические указания по решению задач.

Самостоятельное изучение данного учебно-методического пособия способствует мотивированному усвоению содержания курса, развитию творческой составляющей в работе, приобретению навыков исследовательского поиска и применения специальных программных продуктов, анализа реальных фактических данных, чтения и обобщения информации. Появляется понимание значимости оборудования в исследовании торгово-экономических процессов, интерес к предмету.

Учебно-методическое пособие «Практикум по дисциплине «Материально-техническое обеспечение предприятий торговли и общественного питания» призвано упорядочить процесс решения задач и облегчить изучение дисциплины «Материально-техническое обеспечение предприятий торговли и общественного питания».

§1. Материально-техническое обеспечение оборудованием для формовки пищевого сырья

1.1. Материально-техническое обеспечение котлетоформовочной машиной

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Торговую компанию, которая занимается розничными продажами пищевой продукции и услугами общественного питания, требуется обеспечить машиной для формовки котлет. Требуется определить требуемую производительность И мощность котлетоформовочной машины. Основные технические данные: диаметр бункера D=0,264 м; максимальное и минимальное расстояния от оси вращения до рабочих точек лопасти r_{max} =0,131 м и r_{min} =0,032 м соответственно; частота вращения формовочного вала n_1 =0,2 с⁻¹; частота вращения лопастей n=0,62 c^{-1} ; высота бункера H=0,25 м; площадь формовочного отверстия F=0,004 M^2 ; радиус центра вращения ячейки R=0,11 м; число отверстий в формовочном столе z=3; m=98 кг — масса загруженного продукта; f=0,12 коэффициент трения мясного фарша; $P_0 = 5 \cdot 10^3 \; \text{H/m}^2$ - коэффициент липкости для мясного фарша; диаметр формовочного отверстия d=0,07 м; τ $= 2.10^3$ Па - предельное напряжение сдвига; $\eta = 0.8 - \text{к.п.д.}$ передаточного механизма.

Решение.

Производительность машины для формовки котлет:

$$Q = 3600n_1z = 3600 \cdot 0.2 \cdot 3 = 2160 \text{ m}\text{T./yac}$$

где:

 n_I =0,2 с⁻¹ - частота вращения формовочного вала,

z=3 - число отверстий в формовочном столе.

Рассчитываем угловую скорость:

$$\omega = 2\pi n = 2 \cdot 3,14 \cdot 0,63 = 3,96$$
 рад/с,

где:

 π =3,14 (константа),

n=0,62 с⁻¹ - частота вращения лопастей.

Рассчитываем средний радиус лопастей:

$$r_{cp} = \frac{r_{\text{max}} + r_{\text{min}}}{2} = \frac{0.131 + 0.032}{2} = 0.0815 \text{ M},$$

где:

- максимальное и минимальное расстояния от оси вращения до рабочих точек лопасти r_{max} =0,131 м и r_{min} =0,032 м соответственно.

Величина силы трения, действующая по нормали к поверхности слвига:

$$P = m\omega^2 r_{cp} = 98 \cdot 3,96^2 \cdot 0,0815 = 125 \,\mathrm{H},$$

где:

m=98 кг – масса загруженного продукта,

 ω =3,96 рад/с – угловая скорость,

 r_{cp} =0,0815 м - средний радиус лопастей.

Рассчитываем величину площади контакта продукта с цилиндрическим бункером:

$$F_0 = \pi DH + \frac{\pi D^2}{4} - F = 3.14 \cdot 0.264 \cdot 0.25 + \frac{3.14 \cdot 0.264^2}{4} - 0.004 = 0.26 \,\mathrm{M}^2,$$

где:

 π =3,14 (константа),

D=0,264 м - диаметр бункера,

H=0,25 м - высота бункера,

F=0,004 м² - площадь формовочного отверстия.

Рассчитываем силу трения:

$$T = f(P + P_0 F_0) = 0.12 \cdot (125 + 5 \cdot 10^3 \cdot 0.26) = 171 \text{ H},$$

где:

f=0,12- коэффициент трения мясного фарша,

 $P_0 = 5 \cdot 10^3 \text{ H/m}^2$ - коэффициент липкости,

 F_0 =0,26 м 2 - величина площади контакта продукта с цилиндрическим бункером,

 $P=125~{
m H}$ - величина силы трения, действующая по нормали к поверхности сдвига.

Рассчитываем мощность машины для формовки котлет, требуемую для преодоления силы трения:

$$N_1 = \pi nDT = 3.14 \cdot 0.62 \cdot 0.264 \cdot 171 = 88 \,\mathrm{BT}$$

где:

 π =3,14 (константа),

n=0,62 c^{-1} - частота вращения лопастей.

D=0,264 м - диаметр бункера,

T = 171 H - сила трения.

Рассчитываем силу отделения порции котлетной массы:

$$P_c = \tau \cdot F = 2 \cdot 10^3 \cdot 0,004 = 8 \text{ H},$$

гле:

 $\tau = 2 \cdot 10^3$ Па - предельное напряжение сдвига,

F=0,004 м² - площадь формовочного отверстия.

Находим среднюю скорость отделения порции котлетной массы для последующей формовки:

$$v_c = 2\pi n_1 R = 2 \cdot 3.14 \cdot 0.2 \cdot 0.11 = 0.14 \text{ M/c},$$

где:

 π =3,14 (константа),

 $n_{I}=0.2~{
m c}^{-1}$ — частота вращения стола (частота вращения формовочного вала),

R = 0,11 м — радиус центра вращения ячейки (радиус вращения до центра отверстия).

Требуемая мощность формовки котлет:

$$N_2 = P_c \cdot v_c = 8.0,14 = 1,12$$
 BT,

где:

 $P_c = 8 \text{ H}$ - сила отделения порции котлетной массы,

 $v_c = 0,14 \text{ м/c}$ - средняя скорость отделения порции котлетной массы для последующей формовки.

Требуемая мощность машины для формовки котлет (котлетоформовочной машины):

$$N = \frac{88 + 1{,}12}{1000 \cdot 0{,}8} = 0{,}11 \text{ KBT},$$

где:

 η =0,8 – к.п.д. передаточного механизма.

1.2. Расчет количества холодных напитков, хлеба, кондитерских изделий и закупаемой продукции для оптимальной загрузки оборудования торговой компании

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Для оптимальной загрузки оборудования торговой компании, которая занимается розничными продажами пищевой продукции и услугами общественного питания требуется произвести расчет количества холодных напитков, хлеба, кондитерских изделий и закупаемой продукции, т.е. рассчитать количество продукции и продуктов данного вида, если известно, что в среднем, в день, предприятие посещают 300 человек. Исходные данные сведены в таблицу 2. Ответ с расчетами предоставить в табличной форме.

Таблица 2 - Исходные данные

Наименование продукции	Количество	Норма
и продуктов	потребителей, чел.	потребления
		на 1 человека
Холодные напитки, л,	300	0,25 л
в том числе:		
- фруктовая вода		
- минеральная вода		0,05 л

- натуральный сок - напиток собственного Производства		0,08 л 0,02 л 0,1 л
Хлеб и хлебобулочные изделия, г, в том числе: - ржаной	300	100 г 50 г
- пшеничный Мучные кондитерские изделия собственного производства, шт	300	50 г 0,5
Конфеты, печенья, кг	300	0,02
Фрукты, кг	300	0,05
Пиво, л	300	0,025
Табачные изделия, пачка	300	0,1
Спички, коробка	300	0,09
Вино-водочные изделия, л	300	0,1

Решение.

Ответ с расчетами предоставляем в табличной форме. Данные с расчетами по количеству продукции и продуктов данного вида сведены в таблицу 3.

Таблица 3 — Результаты расчетов по количеству продукции и продуктов соответствующего вида.

Наименование	Количество	Норма	Количество
продукции	потребителей, чел.	потребления	продукции и
и продуктов		на 1 человека	продуктов
			данного
			вида
Холодные напитки,	300	0,25 л	75
Л,			
в том числе:			
- фруктовая вода		0,05 л	15
- минеральная вода		0,08 л	24
- натуральный сок		0,02 л	6
- напиток		0,1 л	30
собственного			
производства			
Хлеб и	300	100 г	30000
хлебобулочные			
изделия,			
г, в том числе:		50 г	15000
- ржаной		50 г	15000
- пшеничный			

Мучные	300	0,5	150
кондитерские			
изделия			
собственного			
производства, шт			
Конфеты, печенья,	300	0,02	6
КΓ			
Фрукты, кг	300	0,05	15
Пиво, л	300	0,025	7,5
Табачные изделия,	300	0,1	30
пачка			
Спички, коробка	300	0,09	27
Вино-водочные	300	0,1	30
изделия, л			

§2. Материально-техническое обеспечение торговым оборудованием

2.1. Материально-техническое обеспечение горками для выкладки непродовольственных товаров торговой компании

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Рассчитать необходимое количество горок для выкладки непродовольственных товаров на основании следующих данных: площадь торгового зала составляет 300 кв. м; под выкладку товаров предполагается использовать горки, размеры полок которых приведены ниже: 1-я полка – 900 х 600 мм, 2-я полка – 900 х 400 мм, 3-я полка – 900 х 400 мм, 4-я полка – 900 х 400 мм. Прочее оборудование (витрины, прилавки, кассовые кабины) занимает в торговом зале 70 кв. м. Нормативный коэффициент установочной площади равен 0,3.

Решение.

Необходимое количество горок рассчитаем, исходя из знания нормативного значения коэффициента установочной площади (0,3):

1) рассчитаем, какая должна быть установочная площадь по нормативу:

$$300 \text{ kg. m x } 0.3 = 90 \text{ kg. m};$$

2) не всю установочную площадь можно занять под установку горок, так как часть площади уже отведена под другие виды оборудования. Следовательно, площадь, на которую будут установлены горки:

$$90 \text{ kb. m} - 70 \text{ kb. m.} = 20 \text{ kb. m}$$
;

3) определяем установочную площадь одной горки (по нижней, наибольшей полке):

$$0.9 \text{ m} \times 0.6 \text{ m} = 0.54 \text{ kb. m};$$

4) одна горка в торговом зале будет занимать площадь, равную 0,54 кв. м, для установки горок предназначено 20 кв. м, поэтому мы можем установить:

 $20 \text{ кв. м} / 0,54 \text{ кв. м} = 37 единиц оборудования.}$

2.2. Расчет установочной и демонстрационной площади горки торговой компании

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определите установочную и демонстрационную площадь горки 16.02 согласно каталогу Т05М «Мебель для предприятий торговли». В каталоге указанный вид мебели — это горка универсальная, высотой 1600 мм, порядковый номер горки — 2. Размеры полок определены по индексам деталей. Индексу 0,86 соответствует полка без ценникодержателя с шириной 400 мм, а индексу 0,87 — полка без ценникодержателя шириной 500 мм. Полок 0,87 — 2 штуки, это нижние полки оборудования, они являются самыми широкими, поэтому с их помощью следует рассчитать установочную площадь оборудования. Для расчета установочной площади также требуется использовать длину оборудования, а также учесть, что для

горки это будет площадь всех 8 полок, т.е. весь товар может демонстрироваться на всех полках. Мебель в данном каталоге типизированная и унифицированная, поэтому длина равна 900 мм.

Решение.

Определяем установочную площадь горки:

2 полки х 0.9 м (длина) х 0.5 м (ширина) = 0.9 кв. м.

Зная ширину и длину всех полок горки, можно определить ее демонстрационную площадь. Для горки это будет площадь всех полок (весь товар может демонстрироваться на всех полках):

6 полок х 0,9 м (длина) х 0,4 м (ширина) + 0,9 кв. м (площадь двух нижних полок) = 3,06 кв. м.

Таким образом, установочная площадь островной горки -0.9 кв. м, демонстрационная площадь -3.06 кв. м.

2.3. Расчет эффективности использования площади торгового зала супермаркета

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определить эффективность использования площади торгового зала супермаркета, площадь торгового зала которого составляет 160m^2 . В торговом зале установлено 80 горок с площадью основания 90 см х 50 см. Горка имеет 4 яруса. Площадь нижнего яруса составляет 90 см х 50 см, остальные ярусы: 90 см х 40 см.

Решение.

1. Определяем установочную площадь в торговом зале:

$$90cm \times 50cm \times 80 \text{ iiit.} = 360000 \text{ cm}^2 = 36\text{m}^2.$$

2. Определяем коэффициент установочной площади:

$$36\text{m}^2:100\text{m}^2=0,36.$$

Следовательно, торговый зал используется не эффективно, так как оптимальный коэффициент должен быть 0,30, в расчете получили 0,36, т.е. больше оптимального, т.е. будет меньше площадь для установки другого вида оборудования или для проходов покупателей.

- 3. Определяем экспозиционную площадь: $(90\text{cm}^2 \times 50\text{cm}^2 + 90\text{cm}^2 \times 40\text{cm}^2) \times 80 \text{ шт.} = 648000 \text{ см}^2 = 648 \text{ m}^2.$
- 4. Определяем коэффициент экспозиционной площади 648 м 2 : 160 м 2 =4,05.

Торговый зал используется не эффективно, т.к. коэффициент должен составлять 0,65-0,75.

2.4. Расчет эффективности использование площади торгового зала под размещение торгового оборудования в супермаркете

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определить насколько эффективно осуществляется использование площади торгового зала под размещение торгового оборудования в супермаркете, где установлено 110 горок, площадь основания которых составляет 90 х 50 см. Площадь торгового зала $\Pi_3 = 150 \text{м}^2$. Значение оптимального коэффициента экспозиции, использования площади, принять равным в пределах 0,30-0,32.

Решение.

- 1. Рассчитываем установочную площадь торгового зала:
- Π_y =(90х50 см²) х 110 горок= 495000 см²=49,5 м².
- 2. Рассчитываем действительное значение коэффициента использования площади в торговом зале:

$$K_y = \Pi_y / \Pi_3$$
,
 $K_v = 49.5 \text{ m}^2 / 100 \text{ m}^2 = 0.495$.

 $3.\ 0,495 > 0,32$, оптимальный коэффициент равен 0,30-0,32.

В торговом зале установлено больше горок, чем следует, что способствует уменьшению площади торгового зала для покупателей, следовательно, снижается товарооборот на 1м² площади торгового зала.

§3. Материально-техническое обеспечение оборудованием для измельчения и перемешивания пищевого сырья

3.1. Материально-техническое обеспечение молотковой дробилкой

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

На молотковую дробилку, работающую в замкнутом цикле поступает G=20 т/ч костей. Размер кусков продукта дробления должен составлять $d_{\kappa}=10$ мм. В исходном материале содержится 25 % кусков, размер которых менее 10 мм. После однократного прохождения материала через дробилку продукт дробления содержит 65 % кусков размером более 10 мм. $\eta=0.85$ - к.п.д. грохота. Определить производительность дробилки и грохота.

Решение.

1. Доля крупных кусков в исходном материале:

$$a = 1.0 - 0.25 = 0.75$$
.

2. Нагрузку дробилки при работе в замкнутом цикле определяем по формуле:

$$q = a/(\eta - b)$$
,

где:

a =1-0,25=0,75 - массовая доля крупных кусков в исходном материале;

$$\eta = 0.85$$
 - к.п.д. грохота;

b=0.65 - массовая доля кусков, размер которых в продукте дробления больше заданного.

Учитывая, что $\eta = 0.82$, получим: q = 0.75/(0.82 - 0.65) = 4.41.

3. Производительность молотковой дробилки

$$Q_{\partial} = G_q = 20 \cdot 4,41 = 88,2$$
 т/ч.

4. Производительность грохота:

$$Q_{\Gamma} = Q_{\partial} + G = 88.2 + 20 = 100.2 \text{ T/y}.$$

3.2. Материально-техническое обеспечение открытой турбинной мешалкой

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определить мощность, потребляемую открытой турбинной мешалкой на предприятии общественного питания, вращающейся с частотой n=4,7 с⁻¹, при перемешивании суспензии в аппарате D=1,2 м и высотой H=1,6 м. Плотность жидкости $\rho_{\infty}=1070$ кг/м³; вязкость $\mu_{\infty}=0,02$ Па · с. Содержание твердой фазы $\varphi=0,3$. Плотность частиц $\rho_{\text{тв}}=1400$ кг/м³. Значение критерия Эйлера $E_{uM}=1,2$.

Решение.

1. Плотность суспензии определяем по формуле:

$$\rho_{\rm c} = \rho_{\rm TB} \varphi + \rho_{\rm MC} (1 - \varphi) = 1400 \cdot 0.3 + 1070 \cdot 0.7 = 1169 \text{ kg/m}^3.$$

2. Вязкость суспензии определяем по формуле:

$$\mu_c = \mu_{\text{x}}(1 + 4.5\,\varphi) = 0.02 \cdot (1 + 4.5\,\cdot\,0.3) = 0.047\,\,\text{Ha}\,\cdot\,\text{c}.$$

- 3. Диаметр нормализованной мешалки $d_m = 0.33 \cdot D = 0.33 \cdot 1.2 \approx 0.4$ м.
 - 4. Определяем режим перемешивания:

$$R_{em} = \frac{nd_{_{M}}^{2}\rho_{_{c}}}{\mu_{_{c}}} = \frac{4.7 \cdot 0.4^{2} \cdot 1169}{0.047} = 18704.$$

 $n=4.7 \text{ c}^{-1}$ – частота вращения турбинной мешалки;

 $d_m = 0,4$ м - диаметр нормализованной мешалки;

 $\rho_{\rm c} = 1169 \, {\rm кг/m}^3$ - плотность суспензии;

 μ_c =0,047 Па · с - вязкость суспензии.

Следовательно, режим турбулентный.

5. Используем заданное значение критерия Эйлера: $E_{uM} = 1,2,$ согласно

нему рассчитываем мощность, потребляемую мешалкой:

$$N = E_{\nu M} \rho_c n^3 d_M^5 = 1,2.1169.4,7^3.0,4^5 \approx 1,5 \text{ KBT},$$

где:

 $E_{uM} = 1,2$ - заданное значение критерия Эйлера;

 $\rho_{\rm c}$ = 1169 кг/м³ - плотность суспензии;

n=4,7 с⁻¹ — частота вращения турбинной мешалки;

 $d_m = 0,4$ м - диаметр нормализованной мешалки.

§4. Материально-техническое обеспечение оборудованием для выпаривания и сушки

4.1. Материально-техническое обеспечение оборудованием для выпаривания

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

В предприятиях применяется оборудование с технологией выпаривания для получения сока. Определить количество воды, которое необходимо выпарить, чтобы получить сок с концентрацией сухих веществ 30 мас. %. Начальная концентрация сухих веществ в соке 10 мас. %, количество исходного раствора $G_{H} = 1000$ кг.

Решение.

Количество выпаренной воды находим из материального баланса:

 $G_{H} = G_{K} + W$ (по всему веществу),

 $G_{H} x_{H} = G_{K} x_{K}$ (по растворенному твердому веществу).

Откуда:

$$W = G_{\scriptscriptstyle H} \cdot \left(1 - \frac{X_{\scriptscriptstyle H}}{X_{\scriptscriptstyle K}}\right),\,$$

где:

 G_{H} , G_{K} — массовые расходы начального (поступающего) и конечного (выпаренного) раствора соответственно, кг/час;

 x_{H} , x_{K} — начальная и конечная концентрации раствора соответственно, кг/час;

W – количество выпариваемой воды, кг/час

Рассчитываем:

$$W = G_{H} \cdot \left(1 - \frac{x_{H}}{x_{K}}\right) = 1000 \cdot \left(1 - \frac{10}{30}\right) \approx 667 \text{ Kg}.$$

4.2. Материально-техническое обеспечение оборудованием для сушки

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

В технологии изготовления продукции предприятием применяется оборудование для сушки полуфабрикатов из теста, сухарей, подсушивания концентратов, фруктов, растительного сырья и остатков пищи перед утилизацией.

Задания:

- 1. Найти аналитически влагосодержание и энтальпию воздуха при t = 40 °C и $\varphi = 60$ %=0,6, p = 0,098 Мпа, согласно исходным данным давление насыщенного водяного пара p_{H} =0,0073 Мпа.
- 2. Определить по показаниям психрометра относительную влажность воздуха, если температура сухого термометра $t=70\,^{\circ}\mathrm{C}$,

температура мокрого термометра $t_{\scriptscriptstyle M}=65\,^{\circ}{\rm C}$, барометрическое давление $p=0,1\,$ МПа, скорость воздуха $v=0,5\,$ м/с. Абсолютное давление насыщенного пара при $t=70\,^{\circ}{\rm C}$ равно $p_{\scriptscriptstyle H}=0,0312\,$ МПа, и, абсолютное давление насыщенного пара при $t_{\scriptscriptstyle M}=65\,^{\circ}{\rm C}$ составляет $p_{\scriptscriptstyle MH}=0,025\,$ МПа. Коэффициент A для расчета парциального давления водяного пара принять равным 0,000785.

Решение.

По заданию 1.

1. Определяем влагосодержание воздуха на 1 кг сухого воздуха:

$$x = 0.622 \cdot \frac{\varphi p_{_{^{\mathit{H}}}}}{p - \varphi p_{_{^{\mathit{H}}}}} = 0.622 \cdot \frac{0.6 \cdot 0.00737}{0.098 - 0.6 \cdot 0.00737} = 0.622 \cdot \frac{0.004422}{0.093578} = 0.0294 \, \mathrm{kg/kg}$$

(т.е. имеется ввиду влагосодержание воздуха в кг на 1 кг сухого воздуха).

2. Рассчитываем удельную энтальпию:

$$i = \left(1000 + 1,97 \cdot 10^3 \cdot x\right) \cdot t + 2493 \cdot 10^3 \cdot x = \left(1000 + 1,97 \cdot 10^3 \cdot 0,0294\right) \cdot 40 + 2493 \cdot 10^3 \cdot 0,0294 = 115,61 \cdot 1$$
 Дж/кг.

По заданию 2.

1. Парциальное давление водяного пара согласно психрометрической формуле:

$$p_n = p_{MH} - A(t - t_{M})p = 0.025 - 000785 \cdot (70 - 65) \cdot 0.1 = 0.0246 \text{ M}\Pi a.$$

2. Относительная влажность воздуха:

$$\varphi = \frac{p_n}{p_u} = \frac{0,246}{0,312} = 0,788$$
.

§5. Материально-техническое обеспечение холодильным оборудованием торгового предприятия

5.1. Материально-техническое обеспечение холодильной установкой для охлаждения и замораживания пищевых продуктов

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Предприятие занимается розничной торговлей пищевой продукции и реализует услуги общественного питания, в своей деятельности использует холодильную установку для охлаждения и замораживания пищевых продуктов. Охлаждение и замораживание пищевых продуктов и блюд происходит преимущественно при температурах от +3 $^{\circ}$ C до -18 $^{\circ}$ C. Для получения холода в холодильной машине применяется обратный круговой термодинамический цикл, состоящий ИЗ процессов сжатия конденсации и испарения. Данный перенос теплоты осуществляется по обратному циклу Карно. Требуется определить мощность, затрачиваемую холодильной установкой, работающей по циклу Карно, и, отводящей $Q_0 =$ 18500~Дж/с теплоты при температуре кипения равной $-18~^{0}$ С. Температура конденсации хладагента 14 ⁰C.

Решение.

Холодильный коэффициент рассчитываем с учетом измерения температуры согласно циклу Карно в кельвинах, К, поэтому:

$$\varepsilon = \frac{T_0}{T - T_0} = \frac{273 - 18}{(273 + 14) - (273 - 18)} = \frac{255}{32} = 7,97.$$

Мощность, затрачиваемая холодильной установкой (теоретическая мощность):

$$N_T = \frac{Q_0}{\varepsilon \cdot 10^3} = \frac{18500}{7.97 \cdot 10^3} = 2{,}32 \text{ KBT}.$$

5.2. Материально-техническое обеспечение парокомпрессионной холодильной установкой

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Предприятие занимается розничной торговлей пищевой продукции и реализует услуги общественного питания, в своей деятельности использует парокомпрессионную холодильную установку для охлаждения и замораживания пищевых продуктов. Для получения холода в холодильной

машине применяется обратный круговой термодинамический цикл, состоящий из процессов сжатия газа, конденсации и испарения. Данный перенос теплоты осуществляется по обратному циклу Карно. Требуется определить минимальную мощность компрессора, работающего по циклу Карно, аммиачной холодильной установки и массовый выход воды в конденсаторе при выработке 500 кг льда за 1 час из воды при температуре равной $0\,^{\circ}$ С. Аммиак кипит при температуре - 7° С, а конденсируется при температуре 21° С. Вода в конденсаторе нагревается от $12\,^{\circ}$ С до $16\,^{\circ}$ С.

Решение.

1. Теплота, выделяющаяся при замерзании воды:

$$Q = \frac{500 \cdot 339,1 \cdot 1000}{3600} = 47097 \,\mathrm{BT},$$

где:

500 кг - выработка льда,

339,1 кДж/кг = 339,1 \cdot 10³ Дж/кг – удельная теплота замерзания воды; 1 час = 3600 сек.

2. Мощность компрессора (рассчитываем в Кельвинах, т.к. учитываем цикл Карно).

Холодильный коэффициент:

$$\varepsilon = \frac{T_0}{T - T_0}.$$

Мощность компрессора:

$$N_{T} = \frac{Q_{0}}{\varepsilon \cdot 10^{3}} = \frac{Q_{0} \cdot (T - T_{0})}{T \cdot 10^{3}} = \frac{47097 \cdot [(273 + 21) - (273 - 7)]}{(273 - 7) \cdot 10^{3}} = \frac{47097 \cdot [294 - 266]}{266 \cdot 10^{3}} = 4,958$$

$$\kappa B_{T} = 4958 B_{T}.$$

3. Расход теплоты, отводимый водой в компрессоре:

$$Q = 47097 + 4958 = 52055 \text{ BT} = 52,055 \text{ kBT}$$
.

4. Массовый расход воды в конденсаторе с учетом того, что вода в конденсаторе нагревается от 12 0 C до 16 0 C:

$$G_{e} = \frac{52055}{(16-12)\cdot 4958} = 2,62 \text{ K}\Gamma/c.$$

§6. Материально-техническое обеспечение торгового предприятия пищеварочным и паропроводящим оборудованием

6.1. Материально-техническое обеспечение пищеварочным котлом торгового предприятия

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определить толщину изоляции пищеварочного котла. Температура на поверхности изолированного котла t_2 не должна превышать 60 °C (максимально допустимая температура). Котел изолирован гофрированной альфолью. Температура изолируемой стенки котла t_1 принимается равной 111 °C. Значения коэффициентов теплопроводности теплоизоляционных конструкций сведены в таблицу 4.

Таблица 4 - Характеристика теплоизоляционных конструкций

Материал	Объемная	Коэффициент
	масса, р, кг/м	теплопроводности, λ, Вт/(м·К)
Плиты теплоизоляционные	25-40	0,047
из пенопласта		
полистирольного ПСБ-С		
Пенопласт	100	0,041
полиуретановый жесткий		
ПУ-101		
То же, заливной ППУ-Зс	50	0,047
Пенопласт		
поливинилхлорндный:		
ПВХ-1	70-100	0,035
ПВХ-2	100-130	0,047
Пенопласт резольный		
фенолформаль- дегидный:		
ФРП-1	70	0,058
ФРП-2	100	0,058
Асбоцементные	300-500	0,043-0,13
теплоизоляционные		
плиты		
Асбоцементные листы	1900	0,35
Кладка кирпичная	1800	0,82
Шлакобетон	1200-1500	0,46-0,7

Штукатурка цементная	1700	0,88
Стекловата	150	0,46
Шлаковата	250	0,051
Альфоль	350	0,059

Решение.

1. По табл. 1 находим коэффициент теплопроводности K=0,059 гофрированной альфоли:

$$\lambda = 0.059 + 0.00026 \cdot t_{cp};$$
 $t_{cp} = (t_1 + t_2)/2 = (111 + 60)/2 = 85.5 \, ^{\circ}C;$
 $\lambda = 0.059 + 0.00026 \cdot 85.5 = 0.081 \, \text{BT/ (M} \cdot \text{K)}.$

2. Находим тепловые потери поверхности изолированного пищеварочного котла (для стенки):

$$q = 0.46 \cdot t_I + 40 \text{ (BT/m}^2);$$

 $q = 0.46 \cdot 111 + 40 = 91 \text{ BT/m}^2.$

3. Рассчитываем толщину изоляционного слоя:

$$\delta = \lambda \cdot (t_1 - t_2)/q = 0.08 \cdot (111-60)/91 = 0.045 \text{ m} = 45 \text{ mm}.$$

6.2. Материально-техническое обеспечение паропроводом торгового предприятия

Все задания в данном разделе направлены на формирование компетенций ПК-2, ПК-7.

Определить толщину изоляции паропровода диаметром $d_{\scriptscriptstyle H}=108$ мм, по которому транспортируется насыщенный пар. Температура пара t- t_s =143°C; температура окружающего воздуха $t_{{\it eo}3{\it o}}=20$ °C. Изоляцией служит шлаковата. Значения коэффициентов теплопроводности теплоизоляционных конструкций сведены в таблицу 5. Толщину изоляционного слоя (δ) в зависимости от $d_{\scriptscriptstyle H}$ и промежуточного коэффициента m иллюстрирует таблица δ .

Таблица 5 - Характеристика теплоизоляционных конструкций

Материал	Объемная	Коэффициент
	масса, р, кг/м	теплопроводности, λ, Вт/(м·К)
Плиты теплоизоляционные	25-40	0,047
из пенопласта		
полистирольного ПСБ-С		
Пенопласт	100	0,041
полиуретановый жесткий		
ПУ-101		
То же, заливной ППУ-3с	50	0,047
Пенопласт		
поливинилхлорндный:		
ПВХ-1	70-100	0,035
ПВХ-2	100-130	0,047
Пенопласт резольный		
фенолформаль-		
дегидный:		
ФРП-1	70	0,058
ФРП-2	100	0,058
Асбоцементные	300-500	0,043-0,13
теплоизоляционные		
плиты		
Асбоцементные листы	1900	0,35
Кладка кирпичная	1800	0,82
Шлакобетон	1200-1500	0,46-0,7
Штукатурка цементная	1700	0,88
Стекловата	150	0,46
Шлаковата	250	0,051
Альфоль	350	0,059

Таблица 6 - Толщина изоляционного слоя (δ) в зависимости от $d_{{}^{_{\! H}}}$ и m

Наружный	Толщина изоляционного слоя, мм							
диаметр, мм	30	40	50	60	70	80	90	100
				Коэфф	<u> </u> ициент			
32	4,9	4,3	3,9	3,7				
57	6,9	6,0	5,4	4,9	4,6	4,3	4,1	3,9
76	8,4	7,2	6,5	5,9	5,4	5,1	4,8	4,6
89	9,4	8,1	7,2	6,5	6,0	5,6	5,3	5,0
108	10,8	9,3	8,2	7,4	6,8	6,2	5,6	5,5
133	12,5	10,7	9,4	8,6	7,7	7,2	6,7	6,3
159	14,3	12,3	10,7	9,6	8,7	8,0	7,5	7,1

- 1. Промежуточные значения определяются линейной интерполяцией.
 - 2. Промежуточный коэффициент m:

$$m = \frac{q_1}{\lambda (t_1 - t_{6030})},$$

где:

 $t_{603\partial}$ - температура окружающего воздуха, °C;

 q_1 - удельные тепловые потери (удельный тепловой поток через слой изоляции), $\mathrm{Bt/m}^2$;

 λ - коэффициент теплопроводности изоляционного материала, Вт/ (м ·K);

Решение.

1. По табл. 1 находим коэффициент теплопроводности K=0,051 изоляционного материала, тогда:

$$\lambda = 0.051 + 0.00026 \cdot t = 0.051 + 0.00026 \cdot 143 \approx 0.09 \text{ BT/(M·K)}.$$

2. Тепловые потери трубопровода с учетом диаметра (для трубопроводов диаметром 108 мм, $d_{\scriptscriptstyle H}=108$ мм — задано в исходных условиях):

$$q_l = 0.62t + 4.6;$$

 $q_l = 0.62 \cdot 143 + 4.6 = 93.26 \text{ BT/m}.$

3. Промежуточный коэффициент m находим по уравнению (см. примечание к табл. 2):

$$m = \frac{q_1}{\lambda (t_1 - t_{6030})},$$

где:

 t_{6030} - температура окружающего воздуха, °С;

 q_1 - удельные тепловые потери (удельный тепловой поток через слой изоляции), $\mathrm{Bt/m}^2$;

 λ - коэффициент теплопроводности изоляционного материала, Вт/ (м · K);

$$m = \frac{93,26}{0,09 \cdot (143 - 20)} = \frac{93,26}{11,07} = 8,4$$
.

4. По табл. 2 для трубы диаметром $d_{\rm H}=108$ мм при K=8,2 составляет $\delta=50$ мм, при K=9,3 составляет $\delta=40$ мм, далее путем интерполирования находим искомую толщину слоя изоляционного материала, которая будет равна $\delta=48$ мм.

Критерии оценивания выполненных практических заданий

Практические задания включают изучение условий задачи и ответы на поставленные задания.

При выполнении практических заданий обучающемуся необходимо использовать теоретический материал (формулы) изучаемой дисциплины и обосновывать с его помощью свой ответ.

Перед ответом на поставленные в задании вопросы, обучающемуся необходимо внимательно ознакомиться с условиями задачи, выявив значимые для нахождения решения обстоятельства.

Ответы на поставленные в задаче вопросы должны быть мотивированными, обоснованными и развернутыми. Ответы: «да», «нет» не допускаются.

Критерии оценивания представлены в таблице 7.

Таблица 7 – Критерии оценивания практических заданий

Оценка	Уровень подготовленности, характеризуемый оценкой
Превосходно	Задание выполнено в полном объеме (все поставленные задачи решены), ответ логичен и обоснован, обучающийся отвечает четко и последовательно, показывает глубокое знание основного и дополнительного материала
Отлично	Задание выполнено в полном объеме (все поставленные задачи решены), ответ логичен и обоснован, обучающийся отвечает четко и последовательно, показывает глубокое знание основного материала

Очень хорошо	Задание выполнено в полном объеме (все поставленные задачи решены), ответ логичен и обоснован, обучающийся отвечает четко и последовательно, показывает глубокое знание материала, допущено не более 2 неточностей непринципиального характера
Хорошо	Задание выполнено в полном объеме (все поставленные задачи решены), ответ логичен и обоснован, допущены неточности непринципиального характера, но обучающийся показывает систему знаний по теме своими ответами на поставленные вопросы
у довлетворительно	Задание выполнено не в полном объеме (решено более 50% поставленных задач), но обучающийся допускает ошибки, нарушена последовательность ответа, но в целом раскрывает содержание основного материала
Неудовлетворительно	Задание выполнено не в полном объеме (решено менее 50% поставленных задач), обучающийся дает неверную информацию при ответе на поставленные задачи, допускает грубые ошибки при толковании материала, демонстрирует незнание основных терминов и понятий.
Плохо	Задание не выполнено, обучающийся демонстрирует полное незнание материала

Список литературы

Нормативные документы

- Закон РФ от 07.02.1992 N 2300-1 (ред. от 29.07.2018) «О защите прав потребителей».
 Режим доступа: http://www.consultant.ru/document/cons_doc_LAW_305/
- 2. Федеральный закон от 27.12.2002 N 184-ФЗ (ред. от 29.07.2017) «О техническом регулировании». Режим доступа: http://www.consultant.ru/document/cons doc LAW 40241/
- 3. Федеральный закон от 22.05.2003 N 54-ФЗ (ред. от 25.12.2018) «О применении контрольно-кассовой техники при осуществлении расчетов в Российской Федерации». Режим доступа: http://www.consultant.ru/document/cons_doc_LAW_42359/

Основная литература

- 1. Планирование на предприятии: Учебник / Э.А. Афитов. М.: НИЦ ИН-ФРА-М; Мн.: Нов. знание, 2015. 344 с.- Режим доступа: http://znanium.com/bookread2.php?book=483207
- 2. Торговое дело. Организация, технология и проектирование торговых предприятий: Учебник / О.В. Чкалова. М.: Форум: НИЦ ИНФРА-М, 2013. 384 с.: 60х90 1/16. (Высшее образование: Бакалавриат). (переплет) ISBN 978-5-91134-804-5, 1000 экз. 3 Режим доступа: http://znanium.com/bookread2.php?book=424923

Дополнительная литература

1. Ботов, М.И. Лабораторные работы по технологическому оборудованию предприятий общественного питания (механическое и тепловое оборудование) / М.И. Ботов, В. Елхина. - СПб.: Лань, 2015. - 160 с.

- 2. Васюкова, А.Т. Технология продукции общественного питания: Учебник для бакалавров / А.Т. Васюкова, А.А. Славянский, Д.А. Куликов. - М.: Издательско-торговая корпорация «Дашков и К°», 2015. - 496 с.
- 3. Давыдкина, И. Б. Проектирование и организация торгового пространства предприятий розничной торговли и общественного питания: Учебное пособие / Давыдкина И.Б. М.:НИЦ ИНФРА-М, 2017. 266 с.
- 4. Кащенко, В.Ф. Оборудование предприятий общественного питания: учеб. пособие / В.Ф. Кащенко, Р.В. Кащенко. М.: Альфа М : ИНФРА М, 2017. 412 с.
- 5. Оборудование предприятий общественного питания: Методические рекомендации / А.И. Ремнев, Н.А. Ковальченко, И.Г. Зиновьева. Белгород: ИПК НИУ «БелГУ», 2016. 76 с.
- 6. Серебряков, А.О. Лабораторные работы по технологическому оборудованию предприятий общественного питания (механическое и тепловое оборудование): Учебное пособие / А.О. Серебряков, О.И. Серебряков. СПб.: Лань, 2015. 160 с.
- 7. Технический сервис транспортных машин и оборудования: Учебное пособие / С.Ф. Головин. М.: НИЦ ИНФРА-М, 2015. 282 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Обложка) ISBN 978-5-16-011135-3 Режим доступа: http://znanium.com/bookread2.php?book=495420
- 8. Технологическое оборудование предприятий общественного питания и торговли: практикум / К.Я. Гайворонский. М. : ИД «ФОРУМ» : ИНФРА-М, 2017. 104 с.
- 9. Шаркова, А. В. Экономика организации [Электронный ресурс] : Практикум для бакалавров / А. В. Шаркова, Л. Г. Ахметшина. М.: Издательско-торговая корпорация «Дашков и К°», 2014. 120 с. Режим доступа: http://znanium.com/catalog.php?bookinfo=512698

Сергей Александрович Кирюшин

Татьяна Дмитриевна Муранова

ПРАКТИКУМ ПО ДИСЦИПЛИНЕ «МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРЕДПРИЯТИЙ ТОРГОВЛИ И ОБЩЕСТВЕННОГО ПИТАНИЯ» ЧАСТЬ II

Учебно-методическое пособие

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского». 603950, Нижний Новгород, пр. Гагарина, 23.