МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет имени Н.И. Лобачевского

С.Ю. Галкина, О.Е. Галкин

неопределенный интеграл

Курс лекций

Рекомендовано методической комиссией механико-математического факультета для студентов ННГУ, обучающихся по направлениям подготовки 011200 «Физика», 210100 «Электроника и наноэлектроника», 230400 «Информационные системы и технологии», 222900 «Нанотехнологии и микросистемная техника».

Нижний Новгород 2015 год

Галкина С.Ю., Галкин О.Е. «Неопределенный интеграл»: Курс лекций. – Нижний Новгород: Нижегородский университет, 2015. – 37 с.

Рецензент – к.ф.-м.н., доцент кафедры дифференциальных уравнений и математического анализа механико-математического факультета A.M. Терентьев.

В настоящем методическом пособии содержатся теоретические сведения по теме «Неопределенный интеграл». Рассмотрены методы интегрирования различных классов функций, приведено много примеров с подробными решениями. Курс лекций составлен в соответствии с действующей программой по математическому анализу для физического факультета ННГУ. Данное пособие рекомендуется для использования не только студентами физического, но также радиофизического и химического факультетов ННГУ.

Работа выполнена на кафедре теории функций механико-математического факультета ННГУ, заведующий кафедрой д.ф.-м.н., профессор М.И. Сумин

Ответственный за выпуск:

Председатель методической комиссии механико-математического факультета ННГУ, к.ф.-м.н., доцент Денисова Н.А.

УДК 517.31

© Нижегородский государственный университет имени Н.И.Лобачевского, 2015

Неопределенный интеграл

§ 1. Понятие неопределённого интеграла и основные методы его вычисления.

1.1. Первообразная и неопределенный интеграл

К числу важных задач механики относятся задача о нахождении закона движения материальной точки по ее заданной скорости, а также задача об нахождении закона движения и скорости материальной точки по ее заданному ускорению. Эти задачи приводят к математической проблеме отыскания функции по заданной производной этой функции.

Определение. Функция F называется первообразной для функции f на промежутке X, если в каждой точке x из промежутка X:

- 1) F является дифференцируемой (при этом если точка x конец промежутка X , то в ней должна существовать соответствующая односторонняя производная);
- 2) F'(x) = f(x).

Пример. Для функции f(x) = x первообразной является, например, функция $F(x) = \frac{x^2}{2}$. Очевидно, что функция $F(x) = \frac{x^2}{2} + 5$ - также ее первообразная.

Следующее утверждение сразу следует из определения первообразной: **Лемма 1.** Если F(x) – некоторая первообразная для функции f(x), то F(x) + C также является первообразной для функции f(x).

Верно и обратное утверждение:

Лемма 2. Пусть $F_1(x)$ и $F_2(x)$ – две первообразные для функции f(x) на промежутке X. Тогда они отличаются только на константу, то есть $F_1(x) - F_2(x) \equiv const$.

Доказательство. Найдем производную от разности этих первообразных: $(F_1(x) - F_2(x))' = F_1'(x) - F_2'(x) = f(x) - f(x) = 0$. Тогда, по теореме об условиях постоянства функции на промежутке, $F_1(x) - F_2(x) \equiv const$.

Следствие. Если F(x) – некоторая первообразная функции f(x) на промежутке X, то $\{F(x)+C, \text{где } C$ – произвольная константа $\}$ – это множество всех первообразных функции f(x) на промежутке X.

Определение. Неопределённый интеграл функции f – это множество всех первообразных для неё. Он обозначается символом $\int f(x) dx$.

Из этого определения и предыдущего следствия видим, что $\int f(x)dx = \{\,F(x) + C\,,\, \text{где }C - \text{произвольное действительное число},\,\, F - \text{некоторая}$ первообразная функции f $\}$. Обычно это записывают короче: $\int f(x)dx = F(x) + C\,,$ где $C \in \mathbf{R}$.

1.2. Свойства неопределённого интеграла

- 1) $\int dF(x) = F(x) + C.$
- 2) $d(\int f(x)dx) = f(x)dx$.
- 3) $\int k \cdot f(x) dx = k \cdot \int f(x) dx$ при $k \neq 0$.
- 4) $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx.$

Доказательство.

1).
$$\int dF(x) = \int F'(x)dx = F(x) + C$$
.

2).
$$d(\int f(x)dx) = d(F(x) + C) = F'(x)dx = f(x)dx$$
.

3). Пусть F(x) – первообразная для функции f(x). Из свойств производной следует, что $k\cdot F(x)$ является первообразной для функции $k\cdot f(x)$. Тогда

$$\int k \cdot f(x) dx = k \cdot F(x) + C, \qquad (1)$$

$$k \int f(x)dx = k(F(x) + C_1) = k \cdot F(x) + k \cdot C_1. \tag{2}$$

Так как C и C_1 – произвольные константы, то $k \cdot C_1$ – тоже произвольная константа. Поэтому правые, а, значит, и левые части в равенствах (1) и (2) равны.

4). Пусть F(x) — первообразная для f(x); G(x) — первообразная для g(x). Тогда F(x)+G(x) — первообразная для f(x)+g(x). Поэтому выполняются равенства

$$\int (f(x) + g(x))dx = F(x) + G(x) + C_1$$
 (3)

$$\int f(x)dx + \int g(x)dx = F(x) + G(x) + C_3 + C_2.$$
 (4)

Так как C_1 , C_2 , C_3 – произвольные константы, то в равенствах (3) и (4) правые, а, значит, и левые части равны.

Первые два свойства неопределённого интеграла говорят о том, что дифференцирование и интегрирование — взаимно обратные операции. Третье и четвертое свойства означают, что операция интегрирования линейна. Свойства 1), 3) и 4) используются для вычисления интегралов.

1.3. Таблица основных неопределенных интегралов

$$1) \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1).$$

$$2) \int \frac{dx}{x} = \ln|x| + C \quad (x \neq 0).$$

3)
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
 $(a > 0, a \ne 1)$.

$$4) \int e^x dx = e^x + C.$$

$$5) \int \cos x \, dx = \sin x + C \, .$$

$$6) \int \sin x \, dx = -\cos x + C.$$

7)
$$\int \frac{dx}{\cos^2 x} = tg \ x + C \qquad (x \neq \frac{\pi}{2} + \pi n, \ n \in \mathbf{Z}).$$

8)
$$\int \frac{dx}{\sin^2 x} = -ctg \ x + C \quad (x \neq \pi n, \ n \in \mathbf{Z}).$$

9)
$$\int \frac{dx}{x^2 + 1} = \arctan x + C.$$

10)
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C \quad (-1 < x < 1).$$

11)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C \quad (a \neq 0).$$

12)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \quad (-a < x < a, \ a > 0)$$
.

13)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \quad (x \neq \pm a, \ a \neq 0).$$

14)
$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln |x + \sqrt{x^2 + a}| + C$$
.

$$15) \int \operatorname{ch} x \, dx = \operatorname{sh} x + C.$$

$$16) \int \operatorname{sh} x \, dx = \operatorname{ch} x + C.$$

$$17) \int \frac{dx}{\cosh^2 x} = \tanh x + C.$$

18)
$$\int \frac{dx}{\sinh^2 x} = -\coth x + C \quad (x \neq 0).$$

Некоторые, наиболее простые интегралы можно вычислять, пользуясь только таблицей и свойствами.

Пример 1. Вычислить интеграл $\int \frac{x^2}{x^2+1} dx$.

Решение. В числителе дроби прибавим и вычтем 1, затем, поделив почленно, получим разность двух табличных интегралов:

$$\int \frac{x^2}{x^2 + 1} dx = \int \frac{(x^2 + 1) - 1}{x^2 + 1} dx = \int 1 dx - \int \frac{1}{x^2 + 1} dx = x - \arctan x + C;$$

Пример 2. Вычислить интеграл $\int \cos^2 \frac{x}{2} dx$.

Решение. Применим тригонометрическую формулу понижения степени:

 $\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$. Затем вынесем постоянный множитель $\frac{1}{2}$ за знак интеграла и получим сумму двух табличных интегралов:

$$\int \cos^2 \frac{x}{2} dx = \int \frac{1 + \cos x}{2} dx = \frac{1}{2} \left(\int dx + \int \cos x dx \right) = \frac{1}{2} (x + \sin x) + C.$$

Пример 3. Вычислить интеграл $\int \frac{dx}{\cos^2 x \cdot \sin^2 x}$.

Решение. Числитель подынтегральной дроби, в силу основного тригонометрического тождества, представим в виде: $1 = \cos^2 x + \sin^2 x$. Затем поделим дробь почленно и получим сумму двух табличных интегралов:

$$\int \frac{dx}{\cos^2 x \cdot \sin^2 x} = \int \frac{\cos^2 x + \sin^2 x}{\cos^2 x \cdot \sin^2 x} dx = \int \frac{dx}{\sin^2 x} + \int \frac{dx}{\cos^2 x} = \operatorname{tg} x - \operatorname{ctg} x + C.$$

Однако, в большинстве случаев для вычисления интегралов необходимы дополнительные методы. Основные из них — это метод замены переменной и метод интегрирования по частям.

1.4. Замена переменной в неопределённом интеграле

Теорема. Пусть X, Y, Z – промежутки, и заданы функции $\varphi: X \to Y$, $f: Y \to Z$. При этих условиях определена композиция $f \circ \varphi: X \to Z$, $x \mapsto f(\varphi(x))$. Пусть функция φ дифференцируема на промежутке X, и функция f имеет первообразную F на промежутке Y. Тогда $F(\varphi(x))$ – первообразная для функции $f(\varphi(x)) \cdot \varphi'(x)$ на промежутке X, то есть справедливы формулы:

Доказательство. По правилу вычисления производной от сложной функции имеем

 $(F(\varphi(x)))' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$. Это означает, что функция $F(\varphi(x))$ является первообразной для функции $f(\varphi(x)) \cdot \varphi'(x)$. Тогда по определению неопределенного интеграла имеем:

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)) + C \qquad \text{if} \qquad \int f(t) dt = F(t) + C.$$

Так как $t = \varphi(x)$, то формула доказана.

Пример 1. Вычислить интеграл $\int e^{\sqrt{x}} \cdot \frac{dx}{\sqrt{x}}$.

Решение. Воспользуемся приемом внесения под дифференциал.

Так как
$$d(\sqrt{x}) = \frac{dx}{2\sqrt{x}}$$
, то

$$\int e^{\sqrt{x}} \cdot \frac{dx}{\sqrt{x}} = 2 \int e^{\sqrt{x}} \cdot \frac{dx}{2\sqrt{x}} = 2 \int e^{\sqrt{x}} d(\sqrt{x}) = 2e^{\sqrt{x}} + C.$$

Пример 2. Вычислить интеграл $I = \int \frac{dx}{\sin x}$.

Решение. Вычислим этот интеграл двумя способами.

1 способ (внесение под дифференциал).

Домножим на $\sin x$ числитель и знаменатель дроби

$$I = \int \frac{dx}{\sin x} = \int \frac{\sin x \, dx}{\sin^2 x} = \int \frac{\sin x \, dx}{1 - \cos^2 x}$$

Применив формулу $\sin x dx = -d(\cos x)$, получаем табличный интеграл.

$$I = \int \frac{d(\cos x)}{\cos^2 x - 1} = \frac{1}{2} \ln \left| \frac{\cos x - 1}{\cos x + 1} \right| + C.$$

Ответ можно упростить, пользуясь тригонометрическими формулами понижения степени

$$I = \frac{1}{2} \ln \left| \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right| + C = \ln \left| tg \frac{x}{2} \right| + C.$$

2 способ (универсальная подстановка).

Из курса тригонометрии известны формулы

$$\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}; \quad \cos x = \frac{1 - tg^2\frac{x}{2}}{1 + tg^2\frac{x}{2}}.$$

Сделаем замену $t = tg \frac{x}{2}$. Тогда

$$\sin x = \frac{2t}{1+t^2}$$
; $x=2arctg\ t$; $dx = \frac{2dt}{1+t^2}$.

Подставляя эти выражения в первоначальный интеграл, получаем

$$I = \int \frac{dx}{\sin x} = \int \frac{1+t^2}{2t} \cdot \frac{2dt}{1+t^2} = \int \frac{dt}{t} = \ln|t| + C = \ln|t| \frac{x}{2} + C.$$

Пример 3. Вычислить интеграл $\int \sqrt{a^2 - x^2} dx$.

Решение. Сделаем замену

$$x = a \sin \varphi \ (-a \le x \le a); \ \sqrt{a^2 - x^2} = a \cos \varphi \left(-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}\right); \ dx = a \cos \varphi d\varphi.$$

Применяя формулу $\cos^2 \varphi = \frac{1 + \cos 2\varphi}{2}$ понижения степени, получаем

$$\int a(\cos\varphi) a(\cos\varphi) d\varphi = \frac{a^2}{2} \int (1+\cos 2\varphi) d\varphi = \frac{a^2}{2} \left(\varphi + \frac{1}{2} \sin 2\varphi \right) + C.$$

Вернемся к первоначальной переменной

$$\varphi = \arcsin \frac{x}{a}$$
, $\sin 2\varphi = 2\cos\varphi\sin\varphi = \frac{2x}{a} \cdot \sqrt{1 - \frac{x^2}{a^2}} = \frac{2x}{a^2} \cdot \sqrt{a^2 - x^2}$.

Тогда получаем окончательный ответ

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \cdot \sqrt{a^2 - x^2} + C \ .$$

1.5. Формула интегрирования по частям.

Теорема. Пусть функции u(x) и v(x) – дифференцируемы на промежутке X и найдётся первообразная для функции $v(x) \cdot u'(x)$. Тогда существует первообразная для функции $u(x) \cdot v'(x)$ и верна формула:

$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int v(x) \cdot u'(x) dx.$$

Если учесть формулу для вычисления дифференциала от функции, то получается более краткая и удобная для запоминания запись формулы интегрирования по

Доказательство. По правилу вычисления производной произведения имеем $(u \cdot v)' = u' \cdot v + u \cdot v'$. Умножим это равенство на dx, получаем

$$(u \cdot v)'dx = u' \cdot vdx + u \cdot v'dx$$
 или $u \cdot v'dx = (u \cdot v)'dx - v \cdot u'dx$.

Проинтегрируем левую и правую части этого равенства

$$\int u \cdot v' dx = \int (u \cdot v)' dx - \int v \cdot u' dx .$$

Так как интеграл в правой части формулы существует, то левая часть также определена и выполняется равенство

$$\int u \cdot v' dx = u \cdot v - \int v \cdot u' dx$$
, что и требовалось доказать.

Метод интегрирования по частям удобно применять в следующих случаях.

- 1) Подынтегральное выражение содержит в виде множителя функции $\ln x$, $\ln f(x)$, $\arcsin x$, $\arccos x$, $\arctan x$. Если в качестве u(x) выбрать эти функции, то подынтегральное выражение $v(x) \cdot du(x)$ нового интеграла обычно получается проще.
- 2) Подынтегральная функция имеет вид $P(x) \cdot e^{ax}$, $P(x) \cdot \sin(ax)$, $P(x) \cdot \cos(ax)$, где P(x) многочлен относительно переменной x. Если в качестве u(x) выбрать P(x), то в новом интеграле подынтегральная функция снова принадлежит одному из указанных типов, но степень многочлена окажется уже на единицу меньше. Выбирая этот многочлен снова в качестве u(x), понижаем степень еще на единицу и т.д.
- 3) Циклическими называются интегралы, для которых после однократного либо неоднократного интегрирования по частям приходим к точно такому же интегралу. В этом случае получаем алгебраическое уравнение относительно искомого интеграла. Например, к этому типу относятся интегралы $\int e^{ax} \cdot \sin(bx) dx$,

 $\int e^{ax} \cdot \cos(bx) dx$, $\int \sin(\ln x) dx$, $\int \cos(\ln x) dx$. После двукратного интегрирования их по частям получается снова исходный интеграл с некоторым коэффициентом. К данному типу относится и ряд других интегралов.

Пример 1. Вычислить интеграл $I = \int \arcsin x dx$.

Решение. Применим формулу интегрирования по частям. Обозначим через

$$u = \arcsin x$$
; $du = \frac{dx}{\sqrt{1 - x^2}}$;

$$dv = dx;$$
 $v = \int dx = x.$

Подставив эти выражения в формулу интегрирования по частям, получаем

$$I = x \arcsin x - \int \frac{x dx}{\sqrt{1 - x^2}} = x \arcsin x + \frac{1}{2} \int \frac{-2x dx}{\sqrt{1 - x^2}} =$$

$$= x \arcsin x + \frac{1}{2} \int \frac{d(1-x^2)}{\sqrt{1-x^2}} = x \arcsin x + \sqrt{1-x^2} + C.$$

Пример 2. Вычислить интеграл $I = \int (x^2 + 3x) \cdot e^x dx$.

Решение. Обозначим через

$$u = x^{2} + 3x; du = (2x + 3)dx;$$

$$dv = e^{x}dx; v = \int e^{x}dx = e^{x}.$$

Подставив эти выражения в формулу интегрирования по частям, получим $\int (x^2+3x)\cdot e^x dx = (x^2+3x)\cdot e^x - \int (2x+3)\cdot e^x dx \ .$

Проинтегрируем еще раз по частям, обозначив

$$u = 2x + 3; du = 2dx;$$

$$dv = e^x dx;$$
 $v = \int e^x dx = e^x.$

Отсюда находим окончательный результат

$$I = (x^2 + 3x)e^x - (2x + 3)e^x + 2\int e^x dx = (x^2 + x - 1)e^x + C.$$

Пример 3. Вычислить интеграл $I = \int \sqrt{a^2 - x^2} dx$.

Решение. Обозначим через

$$u = \sqrt{a^2 - x^2};$$
 $du = -\frac{xdx}{\sqrt{a^2 - x^2}};$

$$dv = dx;$$
 $v = x$

Применив формулу интегрирования по частям, получаем

$$I = \int \sqrt{a^2 - x^2} \, dx = x \sqrt{a^2 - x^2} - \int \frac{-x^2 dx}{\sqrt{a^2 - x^2}} \, .$$

В числителе подынтегральной дроби добавим и вычтем a^2 , затем поделим дробь почленно и запишем интеграл от разности как разность двух интегралов

$$I = x\sqrt{a^2 - x^2} - \int \frac{(a^2 - x^2) - a^2}{\sqrt{a^2 - x^2}} dx = x\sqrt{a^2 - x^2} - \int \sqrt{a^2 - x^2} dx + a^2 \int \frac{dx}{\sqrt{a^2 - x^2}}.$$

Мы пришли к такому же интегралу, с которого начали, это циклический интеграл. Получили уравнение относительно искомого интеграла I:

$$I = x\sqrt{a^2 - x^2} - I + a^2 \arcsin \frac{x}{a};$$

$$2I = x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a}.$$

Поделив пополам и добавив константу, получаем ответ

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C \ .$$

Пример 4 (рекуррентная формула). Обозначим через $I_n = \int \frac{dt}{(t^2 + a^2)^n}$ $(n \in \mathbb{N})$.

Покажем, что для вычисления этого интеграла справедлива рекуррентная формула
$$I_{n+1} = \frac{1}{2na^2} \cdot \frac{t}{(t^2 + a^2)^n} + \frac{2n-1}{2na^2} \cdot I_n \quad (\mathbf{n} \in \mathbf{N}) \ , \ \text{где} \quad I_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \cdot arctg \frac{t}{a}$$

Доказательство. Проинтегрируем интеграл $I_n = \int \frac{dt}{(t^2 + a^2)^n} = \int (t^2 + a^2)^{-n} dt$ частям, обозначив

$$u = (t^2 + a^2)^{-n};$$
 $du = \frac{-2ntdt}{(t^2 + a^2)^{n+1}}$

$$dv = dt;$$
 $v = t$.

Подставим в формулу интегрирования по частям

$$I_n = \frac{\mathsf{t}}{(t^2 + a^2)^n} + 2n \int \frac{\mathsf{t}^2 dt}{(t^2 + a^2)^{n+1}} = \frac{\mathsf{t}}{(t^2 + a^2)^n} + 2n \int \frac{(\mathsf{t}^2 + a^2) - a^2}{(t^2 + a^2)^{n+1}} dt.$$

Поделив почленно последнюю подынтегральную дробь, приходим к равенству

$$I_n = \frac{\mathbf{t}}{(t^2 + a^2)^n} + 2n \cdot I_n - 2na^2 \cdot I_{n+1}$$
.

Выражая отсюда интеграл I_{n+1} , получаем искомую формулу

$$2na^2I_{n+1} = \frac{t}{(t^2 + a^2)^n} + (2n-1) \cdot I_n ;$$

$$I_{n+1} = \frac{1}{2na^2} \cdot \frac{t}{(t^2 + a^2)^n} + \frac{2n-1}{2na^2} \cdot I_n$$
.

Пример 5. Вычислить интеграл $\int \frac{dt}{(t^2+4)^4}$.

Решение. Обозначим этот интеграл $I_4 = \int \frac{dt}{\left(t^2 + 4\right)^4}$. К нему можно применить

рекуррентную формулу, выведенную в предыдущем примере 4. Положив в этой формуле n=3 и a=2, получаем $I_4=\frac{1}{24}\cdot\frac{t}{(t^2+4)^3}+\frac{5}{24}I_3$.

Аналогично, при n=2 и a=2 из рекуррентной формулы получаем

$$I_3 = \frac{1}{16} \cdot \frac{t}{(t^2 + 4)^2} + \frac{3}{16} I_2$$
, где

$$I_2 = \frac{1}{8} \cdot \frac{t}{t^2 + 4} + \frac{1}{8}I_1 = \frac{1}{8} \cdot \frac{t}{t^2 + 4} + \frac{1}{16}arctg\frac{t}{2} + C$$

Подставив I_3 , а затем I_2 в I_4 , получим

$$I_4 = \frac{t}{24(t^2+4)^3} + \frac{5t}{384(t^2+4)^2} + \frac{5t}{1024(t^2+4)} + \frac{5}{2048} \arctan \frac{t}{2} + C.$$

При желании можно три первых дроби привести к общему знаменателю.

§2. Некоторые сведения о комплексных числах, многочленах и рациональных функциях

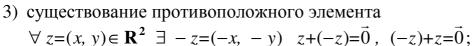
2.1. Поле комплексных чисел. Алгебраическая форма записи комплексного числа.

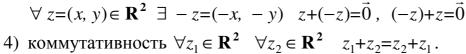
Рассмотрим множество ${\bf R}^2$, элементами которого являются пары (x, y), где $x \in {\bf R}$, $y \in {\bf R}$. Введём в этом множестве арифметические действия.

Действие *сложение* между элементами $z_1 = (x_1, y_1)$ и $z_2 = (x_2, y_2)$ определяется следующим образом:

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$
 и обладает *свойствами*:

- 1) ассоциативность $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$;
- 2) существование нулевого элемента $\exists \vec{0} = (0, 0) \ \forall z \in \mathbf{R}^2 \ z + \vec{0} = z, \ \vec{0} + z = z;$





Действие *умножение* между элементами $z_1 = (x_1, y_1)$ и $z_2 = (x_2, y_2)$ определяется следующим образом $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$ и обладает *свойствами*:

- 1) ассоциативность $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3);$
- 2) существование единичного элемента
- $\exists \vec{1}=(1, 0) \ \forall z \in \mathbf{R} \ z \cdot \vec{1}=z, \ \vec{1} \cdot z=z;$
- 3) существование обратного элемента $\forall z \neq 0 \ \exists \ \frac{1}{z} \colon z \cdot \frac{1}{z} = 1, \ \frac{1}{z} \cdot z = 1;$
- 4) коммутативность $\forall z_1 \in \mathbf{R^2} \ \forall z_2 \in \mathbf{R^2} \ z_1 \cdot z_2 = z_2 \cdot z_1$.

Имеет место также свойство дистрибутивности $(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3$.

Комплексное число можно изображать либо точкой на плоскости, либо вектором. Если ввести для единичных векторов обозначения $\vec{e}_1=(1,0)=1$ и $\vec{e}_2=(0,1)=i$, а также если учесть, что $(x,y)=x\vec{e}_1+y\vec{e}_2$, то любое комплексное число можно записать в виде:

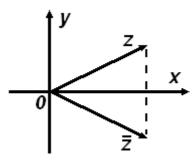
z = x + iy - алгебраическая форма записи комплексного числа.

При этом действительное число x называется действительной частью комплексного числа z и обозначается $x = Re\ z$, а действительное число y называется мнимой частью комплексного числа z и обозначается $y = Im\ z$.

Заметим, что $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$. Тогда умножение комплексных чисел в алгебраической форме можно производить, просто раскрывая скобки:

$$(x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Комплексное число $\bar{z}=x-iy$ называется сопряженным числом к числу z=x+iy .



Действие *деление* между элементами $z_1 = (x_1, y_1)$ и $z_2 = (x_2, y_2)$ определяется следующим образом:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2} = \frac{(x_1 + iy_1) \cdot (x_2 - iy_2)}{(x_2 + iy_2) \cdot (x_2 - iy_2)} = \frac{(x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)}{x_2^2 + y_2^2}$$

Свойства сопряжённых чисел

$$1) \ \overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2;$$

$$2) \ \overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2;$$

$$3) \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2} .$$

2.2. Модуль и аргумент комплексного числа. Тригонометрическая форма записи комплексного числа.

Для любого комплексного числа z = x + iy можно определить его *модуль* по формуле: $|z| = \sqrt{x^2 + y^2}$.

Геометрический смысл модуля: модуль — это расстояние между началом координат и точкой (x, y), соответствующей числу z = x + iy.

Свойства модуля:

$$1) |\bar{z}| = |z|;$$

$$2) \ z \cdot \overline{z} = \left| z \right|^2;$$

3)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 – неравенство треугольника;

4)
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$
 – обратное неравенство треугольника.

Определение. *Аргументом* комплексного числа называется угол, между положительным направлением оси OX и радиус-вектором числа z. $\varphi = \arg z - \operatorname{главное}$ значение аргумента, этот угол изменяется в промежутке $-\pi < \arg z \le \pi$. Он вычисляется по формуле

$$\arg z = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}}, & y \ge 0; \\ -\arccos \frac{x}{\sqrt{x^2 + y^2}}, & y < 0. \end{cases}$$

Произвольный угол, соответствующий данному комплексному числу, принадлежит множеству $Argz = \arg z + 2\pi k, \ k \in \mathbb{Z}$.

Заметив, что $x = |z| \cdot \cos \varphi$ и $y = |z| \cdot \sin \varphi$, и подставив эти выражения в алгебраическую форму записи комплексного числа, получим тригонометрическую форму записи комплексного числа

$$z = |z| \cdot (\cos \varphi + i \cdot \sin \varphi)$$

Пример 1. Записать комплексное число $z = -\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}$ в тригонометрической форме $z = |z| \cdot (\cos\varphi + i\sin\varphi)$.

Решение. Действительная и мнимая части этого числа равны соответственно

$$x = -\cos\frac{\pi}{5}, \ \ y = -\sin\frac{\pi}{5}$$
. Найдем модуль $|z| = \sqrt{\left(-\cos\frac{\pi}{5}\right)^2 + \left(-\sin\frac{\pi}{5}\right)^2} = 1$.

Так как мнимая часть отрицательна, то аргумент находится по формуле

$$\arg z = -\arccos\frac{-\cos\frac{\pi}{5}}{1} = -\left(\pi - \arccos\left(\cos\frac{\pi}{5}\right)\right) = -\frac{4\pi}{5}.$$

Получаем тригонометрическую форму записи:

$$z = 1 \cdot \left(\cos \left(-\frac{4\pi}{5} \right) + i \cdot \sin \left(-\frac{4\pi}{5} \right) \right).$$

В тригонометрической форме записи удобно выполнять действия : умножение, деление, возведение в степень и извлечение корня.

Чтобы умножить два комплексных числа $z_1 = |z_1| \cdot (\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = |z_2| \cdot (\cos \varphi_2 + i \sin \varphi_2)$ в тригонометрической форме записи, нужно их модули перемножить, а аргументы сложить: $z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$. Доказательство.

$$\begin{aligned} &\mathbf{z}_{1} \cdot \mathbf{z}_{2} = \left| \mathbf{z}_{1} \right| \cdot (\cos \varphi_{1} + i \sin \varphi_{1}) \cdot \left| \mathbf{z}_{2} \right| \cdot (\cos \varphi_{2} + i \sin \varphi_{2}) = \\ &= \left| \mathbf{z}_{1} \right| \cdot \left| \mathbf{z}_{2} \right| \cdot ((\cos \varphi_{1} \cos \varphi_{2} - \sin \varphi_{1} \sin \varphi_{2}) + i (\cos \varphi_{1} \sin \varphi_{2} + \cos \varphi_{2} \sin \varphi_{1})) = \\ &= \left| \mathbf{z}_{1} \right| \cdot \left| \mathbf{z}_{2} \right| \cdot (\cos (\varphi_{1} + \varphi_{2}) + i \sin (\varphi_{1} + \varphi_{2})). \end{aligned}$$

Чтобы поделить два комплексных числа $z_1 = |z_1| \cdot (\cos \varphi_1 + i \sin \varphi_1)$ и $z_2 = |z_2| \cdot (\cos \varphi_2 + i \sin \varphi_2)$ в тригонометрической форме записи, нужно их модули поделить, а аргументы вычесть.

$$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|} \cdot (\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2)) .$$

.

Возведение в натуральную степень.

Чтобы возвести в натуральную степень комплексное число $z = |z| \cdot (\cos \varphi + i \sin \varphi)$ в тригонометрической форме записи, нужно модуль возвести в эту степень, а аргумент умножить на эту степень:

$$|z^n = |z|^n \cdot (\cos n\varphi + i\sin n\varphi)$$
 - формула Муавра.

Формула легко доказывается методом математической индукции.

1) При n=2 согласно правилу умножения комплексных чисел в тригонометрической форме записи имеем

$$z^{2} = z \cdot z = |z| \cdot |z| \cdot (\cos(\varphi + \varphi) + i\sin(\varphi + \varphi)) = |z|^{2} \cdot (\cos 2\varphi + i\sin 2\varphi).$$

- 2) Пусть при n = k формула верна: $\mathbf{z}^{k} = |\mathbf{z}|^{k} \cdot (\cos k\varphi + i \sin k\varphi)$.
- 3) Докажем ее при n = k + 1, пользуясь предположением индукции и правилом умножения комплексных чисел в тригонометрической форме записи:

$$z^{k+1} = z^{k} \cdot z = |z|^{k} \cdot (\cos k\varphi + i\sin k\varphi) \cdot |z| \cdot (\cos \varphi + i\sin \varphi) =$$
$$= |z|^{k+1} \cdot (\cos((k+1)\varphi) + i\sin((k+1)\varphi)).$$

Извлечение корня из комплексного числа.

Пусть комплексное число записано в тригонометрической форме $z = |\mathbf{z}| \cdot (\cos \varphi + i \sin \varphi)$.

Запишем его корень также в тригонометрической форме записи $\sqrt[n]{z} = \rho \cdot (\cos \alpha + i \sin \alpha)$.

По определению корня имеем $(\sqrt[n]{z})^n = z$.

Возводя в степень по формуле Муавра, получаем

 $\rho^n \cdot (\cos n\alpha + i\sin n\alpha) = |\mathbf{z}| \cdot (\cos \varphi + i\sin \varphi)$. Отсюда находим модуль корня

$$\rho^n = |z|, \quad \rho = \sqrt[n]{|z|}$$
 и аргумент

$$n\alpha = \varphi + 2\pi k$$
 ; $\alpha_k = \frac{\varphi}{n} + \frac{2\pi k}{n}$; $k = 0,1,...,n-1$.

Итак, корень степени n из комплексного числа извлекается по формуле

$$\boxed{(\sqrt[n]{z})_k = \sqrt[n]{|z|} \cdot \left(\cos\left(\frac{\varphi}{n} + \frac{2\pi k}{n}\right) + i \cdot \sin\left(\frac{\varphi}{n} + \frac{2\pi k}{n}\right)\right)}, \qquad \text{где} \qquad k = 0, 1, \dots, n-1.$$

Для любого комплексного числа различных корней степени n ровно n штук. Все они расположены на окружности с центром в начале координат с радиусом $\rho = \sqrt[n]{|z|}$ и делят эту окружность на п равных частей.

Пример 2. Вычислить $\sqrt[3]{i}$.

Решение. Запишем число *i* в тригонометрической форме $i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$.

Применим формулу извлечения корня из комплексного числа

$$\sqrt[3]{i} = \cos\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right)$$
 при $k = 0, 1, 2$.

Подставляя k = 0, k = 1, k = 2, получаем различные значения корня

$$(\sqrt[3]{i})_0 = \cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{i}{2};$$

$$(\sqrt[3]{i})_1 = \cos\frac{5\pi}{6} + i \cdot \sin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{i}{2};$$

$$(\sqrt[3]{i})_2 = \cos\frac{3\pi}{2} + i \cdot \sin\frac{3\pi}{2} = -i.$$

Извлечение корня квадратного из комплексного числа в алгебраической форме записи.

Запишем квадратный корень из числа a+bi в алгебраической форме $\sqrt{a+bi}=\alpha+\beta i$. Возведем это равенство в квадрат:

$$a+bi=(\alpha+\beta i)^2;$$
 $\alpha^2-\beta^2+2\alpha\beta i=a+bi.$

Приравнивая действительные и мнимые части, а также, учитывая, что модуль числа a + bi равен квадрату модуля его корня, получаем систему

$$\begin{cases} \alpha^2 - \beta^2 = a \\ 2\alpha\beta = b \\ \alpha^2 + \beta^2 = \sqrt{a^2 + b^2} \end{cases}$$

Решая эту систему, находим $2\alpha^2 = a + \sqrt{a^2 + b^2}$, откуда

$$\alpha = \pm \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}}$$

$$\beta = \frac{b}{2\alpha}$$

Пример 3. Вычислить $\sqrt{3+4i}$.

Решение. Действительная и комплексная части 3+4i равны a=3 и b=4. Вычислим по найденной формуле действительную и комплексную части его корня

$$\alpha = \pm \sqrt{\frac{3 + \sqrt{3^2 + 4^2}}{2}} = \pm 2,$$

$$\beta = \frac{4}{\pm 4} = \pm 1.$$
MTak.
$$\sqrt{3 + 4i} = \pm (2 + i).$$

2.3. Многочлены. Разложение на множители.

Рассмотрим многочлен степени n с комплексными коэффициентами от комплексной переменной

$$P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$
, где $z \in \mathbb{C}$, z – комплексная переменная; $a_n, \ldots, a_1, a_0 \in \mathbb{C}$ – комплексные числа.

Любой многочлен $P_n(z)$ можно поделить на многочлен $Q_m(z)$ с остатком, то есть представить в виде

$$P_n(z) = Q_m(z) \cdot S_{n-m}(z) + R_l(z), \qquad m < n, \ 0 \le l < m,$$
 где $Q_m(z)$ — делитель, $R_l(z)$ — остаток, $S_{n-m}(z)$ — частное.

Определение. Число z_0 называется корнем многочлена $P_n(z)$, если $P_n(z_0) = 0$.

Теорема Безу. Число z_0 является корнем многочлена $P_n(z)$ тогда и только тогда, если $P_n(z)$ делится нацело на $(z-z_0)$.

Доказательство.

Необходимость. Пусть z_0 – корень многочлена $P_n(z)$. Поделим $P_n(z)$ на многочлен $\left(z-z_0\right)$ с остатком: $P_n(z)=(z-z_0)\cdot S_{n-1}(z)+R$, где R – число.

Положим в этом равенстве $z=z_0$. Так как z_0 – корень, то $P_n(z_0)=0$, следовательно R=0 и $P_n(z)$ делится нацело на $(z-z_0)$.

Достаточность. Пусть $P_n(z)$ делится на $\left(z-z_0\right)$ без остатка, тогда $P_n(z)=(z-z_0)\cdot S_{n-1}(z)$. Подставляя в это равенство $z=z_0$, получаем $P_n(z_0)=(z_0-z_0)\cdot S_{n-1}(z_0)=0$, следовательно, по определению, z_0 является корнем многочлена $P_n(z)$.

Определение. Число z_0 – корень многочлена $P_n(z)$ кратности k ($k \in \mathbb{N}$), если многочлен можно представить в виде $P_n(z) = (z-z_0)^k \cdot Q_m(z)$, где z_0 не является корнем многочлена $Q_m(z)$, то есть $Q_m(z_0) \neq 0$.

Утверждение. Число z_0 является корнем кратности k ($k \in \mathbb{N}$) многочлена $P_n(z)$ тогда и только тогда, если z_0 является корнем этого многочлена и всех его производных до порядка (k-1) включительно, то есть

$$P_n(z_0) = P'_n(z_0) = \dots = P_n^{(k-1)}(z_0) = 0$$
, a $P_n^{(k)}(z_0) \neq 0$.

Доказательство.

Необходимость. Пусть известно, что $P_n(z) = (z - z_0)^k \cdot Q_m(z)$, где $Q_m(z_0) \neq 0$.

Очевидно, что $P_n(z_0) = 0$, то есть z_0 является корнем многочлена. Покажем, что z_0 является корнем производных многочлена до порядка (k-1) включительно.

Вычислим производную порядка $l \le k$ по формуле

Ньютона-Лейбница

$$\begin{split} &P_{n}^{(l)}(z) = ((z-z_{0})^{k} \cdot Q_{m}(z))^{(l)} = \sum_{j=0}^{l} C_{l}^{j} \cdot ((z-z_{0})^{k})^{(j)} \cdot (Q_{m}(z))^{(l-j)} = \\ &= C_{l}^{0} \cdot (z-z_{0})^{k} \cdot (Q_{m}(z))^{(l)} + C_{l}^{1} \cdot k \cdot (z-z_{0})^{k-l} \cdot (Q_{m}(z))^{(l-1)} + \dots + \\ &+ C_{l}^{l} \cdot k \cdot (k-1) \cdot \dots \cdot (k-l+1) \cdot (z-z_{0})^{k-l} \cdot Q_{m}(z). \end{split}$$

При l < k все слагаемые в правой части в точке $z = z_0$ будут равны нулю, и тогда $P_n^{(l)}(z_0) = 0$. Если же l = k, то в точке $z = z_0$ все слагаемые, кроме последнего, равны нулю. Последнее же слагаемое отлично от нуля в силу условия $Q_m(z_0) \neq 0$. Отсюда $P_n^{(k)}(z_0) \neq 0$.

Достаточность. Разложим многочлен $P_n(z)$ в точке z_0 по формуле Тейлора

$$P_{n}(z) = P_{n}(z_{0}) + P'_{n}(z_{0})(z - z_{0}) + \frac{P''_{n}(z_{0})}{2!}(z - z_{0})^{2} + \dots + \frac{P_{n}^{(k-1)}(z_{0})}{(k-1)!}(z - z_{0})^{k-1} + \frac{P_{n}^{(k)}(z_{0})}{k!}(z - z_{0})^{k} + \dots + \frac{P_{n}^{(n)}(z_{0})}{n!}(z - z_{0})^{n}.$$

Так как первые k слагаемых в правой части обращаются в ноль, то многочлен можно представить в виде

$$P_n(z) = (z - z_0)^k \cdot \left(\frac{P_n^{(k)}(z_0)}{k!} + \frac{P_n^{(k+1)}(z_0)}{(k+1)!} \cdot (z - z_0) + \dots + \frac{P_n^{(n)}(z_0)}{n!} \cdot (z - z_0)^{n-k} \right).$$

При этом многочлен
$$Q_m(z) = \frac{P_n^{(k)}(z_0)}{k!} + \frac{P_n^{(k+1)}(z_0)}{(k+1)!} \cdot (z-z_0) + \dots + \frac{P_n^{(n)}(z_0)}{n!} \cdot (z-z_0)^{n-k}$$

в точке z_0 в ноль не обращается, так как $Q_m(z_0) = \frac{P_n^{(k)}(z_0)}{k!} \neq 0$ по условию.

Тогда z_0 будет корнем кратности k по определению.

Основная теорема алгебры (без доказательства).

Пусть $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ многочлен от комплексной переменной степени n, с комплексными коэффициентами. Тогда он имеет ровно n корней и его можно представить в виде

$$P_n(z)=a_n\cdot(z-z_1)^{k_1}\cdot(z-z_2)^{k_2}\cdot...\cdot(z-z_m)^{k_m}$$
 , где z_i – корень кратности k_i $(i=1,2,...,m);\ k_1+k_2+...+k_m=n.$

Лемма 1. Если z_0 – корень кратности k многочлена $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$, то сопряжённое число \bar{z}_0 является корнем кратности k для сопряженного многочлена $\overline{P}_n(z) = \overline{a}_n z^n + \overline{a}_{n-1} z^{n-1} + \ldots + \overline{a}_1 z + \overline{a}_0$.

Доказательство. Если z_0 – корень кратности k многочлена $P_n(z)$, то многочлен можно представить в виде $P_n(z) = (z - z_0)^k \cdot Q_m(z)$, где $Q_m(z_0) \neq 0$.

Возьмём сопряжённое к левой и правой частям последнего равенства

 $a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = (z - z_0)^k \cdot Q_m(z)$. По свойствам сопряжённых чисел

 $\overline{a}_n\overline{z}^n+...+\overline{a}_1\overline{z}+\overline{a}_0=(\overline{z}-\overline{z}_0)^k\cdot\overline{Q_m(z)}$. В левой части этого равенства стоит значение сопряженного многочлена в точке \bar{z} и оно представимо в виде

 $\overline{P}_n(\overline{z}) = (\overline{z} - \overline{z}_0)^k \overline{Q_m(z)}$, где $\overline{Q_m(z_0)} \neq 0$. Положив в этой формуле $z = \overline{z}$, получим $\overline{P}_n(z) = (z - \overline{z}_0)^k \overline{Q_m(\overline{z})}$. Обозначим $S_m(z) = \overline{Q_m(\overline{z})}$,

тогда $\overline{P}_n(z) = (z - \overline{z}_0)^k \cdot S_m(z)$, где $S_m(\overline{z}_0) = \overline{Q_m(z_0)} \neq 0$.

Это и означает, что \bar{z}_0 – корень кратности k многочлена $P_n(z)$.

Лемма 2. Пусть $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ – многочлен с действительными коэффициентами, но от комплексной переменной. Если z_0 – корень кратности k многочлена $P_n(z)$, то \overline{z}_0 также является корнем кратности k многочлена $P_n(z)$.

Доказательство. По лемме 1 число \bar{z}_0 является корнем кратности k сопряженного многочлена $\overline{P}_n(z) = \overline{a}_n z^n + \overline{a}_{n-1} z^{n-1} + ... + \overline{a}_1 z + \overline{a}_0$. Поскольку коэффициенты многочлена $P_n(z)$ действительны, то сопряженный многочлен совпадает с самим многочленом и число \bar{z}_0 является корнем кратности k многочлена $P_n(z)$.

Теорема. Многочлен от действительной переменной с действительными коэффициентами $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ представляется в виде произведения линейных множителей и квадратных с отрицательным дискриминантом:

 $P_n(x) = a_n \cdot (x - x_1)^{k_1} \cdot \dots \cdot (x - x_m)^{k_m} \cdot (x^2 + p_1 x + q_1)^{S_1} \cdot \dots \cdot (x^2 + p_r x + q_r)^{S_l}$, где x_i – действительный корень кратности k_i (i=1,...,m); $D_i = p_i^2 - 4q_i < 0$ (j=1,...,l); $k_1 + ... + k_m + 2(s_1 + ... + s_t) = n$.

Доказательство. Рассмотрим многочлен $P_n(x)$ как многочлен от комплексной переменной $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$.

Тогда, по основной теореме алгебры, его можно представить в виде $P_n(z) = a_n \cdot (z - z_1)^{k_1} \cdot (z - z_2)^{k_2} \cdot \dots \cdot (z - z_m)^{k_m}$, где z_i – корень кратности k_i . Если z_i - действительное число, то скобку $(z-z_i)^{k_i}$ не преобразовываем. Если $z_j \notin R$, то $z_j = a_j + ib_j$, где $b_j \neq 0$. По лемме 2, если z_j – корень кратности k_j для $P_n(z)$, то \overline{z}_j также корень кратности k_j для $P_n(z)$. Сопряженное число запишется как $\overline{z}_j = a_j - ib_j$, тогда произведение $(z-z_j)^{k_j} \cdot (z-\overline{z}_j)^{k_j} = ((z-a_j-ib_j)\cdot (z-a_j+ib_j))^{k_j} = ((z-a_j)^2 + b_j^2))^{k_j} = (z^2-2za_j+a_j^2+b_j^2)^{k_j} = (z^2+p_jz+q_j)^{k_j}$

можно представить в виде степени, в основании которой лежит квадратный трехчлен с отрицательным дискриминантом

$$D_j = p_j^2 - 4q_j = 4a_j^2 - 4a_j^2 - 4b_j^2 = -4b_j^2 < 0$$
, так как $b_j \neq 0$.

Таким образом, разложили многочлен $P_n(z)$ в произведение линейных множителей и квадратных с отрицательным дискриминантом. Положив z=x, получим искомое разложение для $P_n(x)$.

2.4. Рациональные функции.

Рациональная функция – это отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$,

где $P_n(x)$ – многочлен степени n, а $Q_m(x)$ – многочлен степени m. Если $n \ge m$, то дробь неправильная; если же n < m, то дробь правильная.

Если дробь неправильная (степень числителя больше или равна степени знаменателя), то, поделив $P_n(x)$ на $Q_m(x)$, можно выделить целую часть, то есть представить рациональную функцию в виде суммы многочлена и правильной дроби

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{T_k(x)}{Q_m(x)} \qquad (k < m).$$

Среди правильных дробей выделяют особый вид дробей, которые называют простейшими. Простейшие дроби бывают четырех типов:

$$\frac{A}{(x-a)}; \qquad \frac{A}{(x-a)^k}; \qquad \frac{Bx+C}{x^2+px+q}; \qquad \frac{Bx+C}{(x^2+px+q)^S}.$$

Любую правильную дробь $\frac{T_k(x)}{Q_m(x)}$ можно представить в виде суммы

простейших дробей. Для этого знаменатель $Q_m(x)$ нужно разложить на произведение множителей линейных и квадратных с отрицательным дискриминантом:

$$Q_m(x) = a_m \cdot (x - x_1)^{k_1} \cdot ... \cdot (x - x_r)^{k_r} \cdot (x^2 + p_1 x + q_1)^{S_1} \cdot ... \cdot (x^2 + p_1 x + q_1)^{S_l}$$
. Исходя из этого разложения, выписываем сумму простых дробей с неопределенными коэффициентами. Каждому множителю в знаменателе соответствует столько слагаемых, каков показатель степени у этого множителя

$$(x-x_{i})^{k_{i}} \rightarrow \frac{A_{1}^{(i)}}{(x-x_{i})} + \frac{A_{2}^{(i)}}{(x-x_{i})^{2}} + \dots + \frac{A_{k_{i}}^{(i)}}{(x-x_{i})^{k_{i}}};$$

$$(x^{2} + p_{i}x + q_{i})^{S_{i}} \rightarrow \frac{B_{1}^{(i)}x + C_{1}^{(i)}}{(x^{2} + p_{i}x + q_{i})} + \frac{B_{2}^{(i)}x + C_{2}^{(i)}}{(x^{2} + p_{i}x + q_{i})^{2}} + \dots + \frac{B_{S_{i}}^{(i)}x + C_{S_{i}}^{(i)}}{(x^{2} + p_{i}x + q_{i})^{S_{i}}}.$$

В общем случае разложение правильной дроби на простейшие имеет вид

$$\begin{split} &\frac{T_{k}(x)}{Q_{m}(x)} = \frac{A_{1}^{(1)}}{x - x_{1}} + \frac{A_{2}^{(1)}}{(x - x_{1})^{2}} + \dots + \frac{A_{k_{1}}^{(1)}}{(x - x_{1})^{k_{1}}} + \dots + \frac{A_{1}^{(r)}}{x - x_{r}} + \frac{A_{2}^{(r)}}{(x - x_{r})^{2}} + \dots + \\ &+ \frac{A_{k_{r}}^{(r)}}{(x - x_{r})^{k_{r}}} + \frac{B_{1}^{(1)}x + C_{1}^{(1)}}{x^{2} + p_{1}x + q_{1}} + \frac{B_{2}^{(1)}x + C_{2}^{(1)}}{(x^{2} + p_{1}x + q_{1})^{2}} + \dots + \frac{B_{k_{1}}^{(1)}x + C_{k_{1}}^{(1)}}{(x^{2} + p_{1}x + q_{1})^{k_{1}}} + \\ &+ \dots + \frac{B_{1}^{(l)}x + C_{1}^{(l)}}{x^{2} + p_{l}x + q_{l}} + \frac{B_{2}^{(l)}x + C_{2}^{(l)}}{(x^{2} + p_{l}x + q_{l})^{2}} + \dots + \frac{B_{k_{l}}^{(l)}x + C_{k_{l}}^{(l)}}{(x^{2} + p_{l}x + q_{l})^{k_{l}}}. \end{split}$$

Пример 1. Записать неправильную дробь $\frac{x^4}{x^3 - 3x + 2}$ в виде суммы

многочлена и простейших дробей.

Решение. Сначала выделим целую часть, поделив уголком многочлен на многочлен:

$$\frac{x^4}{x^3 - 3x + 2} = x + \frac{3x^2 - 2x}{x^3 - 3x + 2}.$$

Затем, знаменатель правильной дроби $\frac{3x^2 - 2x}{x^3 - 3x + 2}$ разложим на множители

и, исходя из полученного разложения, представим правильную дробь в виде суммы простейших дробей с неопределенными коэффициентами

$$\frac{3x^2 - 2x}{(x+2) \cdot (x-1)^2} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x+2)}$$

Для нахождения неопределенных коэффициентов, домножим обе части этого равенства на знаменатель дроби $(x+2)\cdot(x-1)^2$, получим тождество

$$3x^{2} - 2x = A(x+2)(x-1) + B(x+2) + C(x-1)^{2}$$

Найдем неопределённые коэффициенты A, B, C подстановкой частных значений переменной.

При
$$x=1$$
: $1=3 \cdot B$, отсюда $B=\frac{1}{3}$.

При
$$x = -2$$
: $16 = 9 \cdot C$, отсюда $C = \frac{16}{9}$.

При
$$x = 0$$
 получаем $0 = -2 \cdot A + \frac{2}{3} + \frac{16}{9}$, отсюда $A = \frac{11}{9}$.

Итак, искомое разложение

$$\frac{x^4}{(x+2)\cdot(x-1)^2} = x + \frac{11}{9}\cdot\frac{1}{x-1} + \frac{1}{3}\cdot\frac{1}{(x-1)^2} + \frac{16}{9}\cdot\frac{1}{x+2}.$$

Пример 2. Представить правильную дробь $\frac{x^4 - x^3 + 3x^2 + x + 2}{x \cdot (x^2 + 1)^2}$

в виде суммы простейших дробей.

Решение. Так как знаменатель дроби уже разложен на множители, то, исходя из этого разложения, выпишем сумму простейших дробей:

$$\frac{x^4 - x^3 + 3x^2 + x + 2}{x \cdot (x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{(x^2 + 1)} + \frac{Dx + E}{(x^2 + 1)^2}$$

Домножив это равенство на общий знаменатель, получим тождество

$$x^4 - x^3 + 3x^2 + x + 2 = A(x^2 + 1)^2 + (Bx + C) \cdot x \cdot (x^2 + 1) + (Dx + E) \cdot x.$$

Раскрывая скобки в правой части, получаем

$$x^4 - x^3 + 3x^2 + x + 2 =$$

$$=Ax^4 + 2Ax^2 + A + Bx^4 + Cx^3 + Bx^3 + Bx^2 + Cx + Dx^2 + Ex.$$

Приравнивая коэффициенты при соответствующих степенях в правой и левой частях этого равенства, получаем систему

$$\begin{vmatrix} x^{4} \\ x^{3} \\ C = -1; \\ x^{2} \\ A + B + D = 3; \\ C + E = 1; \\ x^{0} \\ A = 2.$$

Решив эту систему, находим искомое разложение

$$\frac{x^4 - x^3 + 3x^2 + x + 2}{x \cdot (x^2 + 1)^2} = \frac{2}{x} + \frac{-x - 1}{(x^2 + 1)} + \frac{2}{(x^2 + 1)^2}.$$

Можно было получить этот ответ так же, как в предыдущем примере, подставляя частные значения переменной. В данном случае удобно подставлять корни знаменателя x = 0, x = i, x = -i, а также, например, числа

x = 1 и x = -1. Рекомендуется проделать это самостоятельно.

Иногда более рационально получить искомое разложение, не прибегая к описанным двум способам нахождения неопределенных коэффициентов.

В следующем примере это достигается путем добавления и вычитания одной и той же величины к числителю дроби, затем деления почленно.

Пример 3. Представить правильную дробь $\frac{1}{x^2 \cdot (1+x^2)^2}$ в виде суммы

простейших дробей.

Решение.

$$\frac{1}{x^2 \cdot (1+x^2)^2} = \frac{(1+x^2) - x^2}{x^2 \cdot (1+x^2)^2} = \frac{1}{x^2 \cdot (1+x^2)} - \frac{1}{(1+x^2)^2} =$$

$$= \frac{(1+x^2) - x^2}{x^2 \cdot (1+x^2)} - \frac{1}{(1+x^2)^2} = \frac{1}{x^2} - \frac{1}{1+x^2} - \frac{1}{(1+x^2)^2}.$$

§3. Интегрирование рациональных функций.

Рациональная функция – это отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$.

3.1. Интегрирование простейших дробей.

Рассмотрим случай, когда дробь правильная, то есть степень многочлена в числителе меньше, чем степень многочлена в знаменателе. Более того, дробь является простейшей. Простейшие дроби бывают четырёх типов:

$$\int \frac{A}{x-a} dx \; ; \quad \int \frac{A}{(x-a)^k} dx \; (k=2,3,...) \; ; \quad \int \frac{Ax+B}{x^2+px+q} dx \; (D=p^2-4q<0) \; ;$$

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx \; (D=p^2-4q<0) \; ; \; k=2,3,...) \; .$$

Интегралы от простейших дробей первого и второго типа почти табличные

$$\int \frac{A}{x-a} dx = A \ln|x-a| + C ;$$

$$\int \frac{A}{(x-a)^k} dx = \frac{A}{1-k} \cdot \frac{1}{(x-a)^{k-1}} + C .$$

Вычислим интеграл от простейшей дроби третьего типа. Вычисление этого интеграла состоит из нескольких этапов:

1) Сначала выделяем полный квадрат в знаменателе дроби

$$\int \frac{Ax + B}{x^2 + px + q} dx = \int \frac{Ax + B}{\left(x^2 + 2x \cdot \frac{p}{2} + \left(\frac{p}{2}\right)^2\right) + q - \left(\frac{p}{2}\right)^2} dx = \int \frac{Ax + B}{\left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}} dx.$$

Так как D < 0, то можно переобозначить константу $\frac{4q - p^2}{4} = a^2 > 0$.

2) Делаем замену переменной $t=x+\frac{p}{2}$; $x=t-\frac{p}{2}$; dx=dt.

Получаем интеграл
$$\int \frac{A \cdot \left(t - \frac{p}{2}\right) + B}{t^2 + a^2} dt = \int \frac{A \cdot t + \frac{2B - Ap}{2}}{t^2 + a^2} dt.$$

3) Поделив дробь почленно, разбиваем на два интеграла. Первый из них интегрируется внесением под дифференциал, а второй является табличным.

$$\int \frac{At + \frac{2B - Ap}{2}}{t^2 + a^2} dt = A \int \frac{tdt}{t^2 + a^2} + \frac{2B - Ap}{2} \int \frac{dt}{t^2 + a^2} =$$

$$= \frac{A}{2} \int \frac{d(t^2 + a^2)}{t^2 + a^2} + \frac{2B - Ap}{2a} \arctan \frac{t}{a} + C = \frac{A}{2} \ln(t^2 + a^2) + \frac{2B - Ap}{2a} \arctan \frac{t}{a} + C.$$

4) Возвращаясь к старой переменной, получаем

$$\int \frac{Ax+B}{x^2+px+q} dx = \frac{A}{2} \ln(x^2+px+q) + \frac{2B-Ap}{\sqrt{4q-p^2}} \arctan \frac{2x+p}{\sqrt{4q-p^2}} + C.$$

Интеграл от простейшей дроби четвертого типа вычисляется аналогично интегралу от простейшей дроби третьего типа. Кроме того, для интегрирования простейшей дроби четвертого типа нужно использовать рекуррентную формулу.

Выделив в знаменателе полный квадрат, сделав замену переменной $t = x + \frac{p}{2}$,

переобозначив $\frac{4q-p^2}{4}=a^2>0$ и разбив на два интеграла, получаем

$$\int \frac{Ax+B}{\left(x^{2}+px+q\right)^{k}} dx = A \int \frac{tdt}{\left(t^{2}+a^{2}\right)^{k}} + \frac{2B-Ap}{2} \int \frac{dt}{\left(t^{2}+a^{2}\right)^{k}} .$$

Первый интеграл вычисляется внесением под дифференциал, а второй необходимо считать по рекуррентной формуле $I_{n+1} = \frac{1}{2na^2} \cdot \frac{t}{(t^2+a^2)^n} + \frac{2n-1}{2na^2} \cdot I_n$, где

$$I_n = \int \frac{dt}{(t^2 + a^2)^n} \quad (n \in \mathbf{N}).$$

Пример. Вычислить интеграл $\int \frac{x+2}{(x^2+2x+2)^3} dx$.

Решение. Выделим полный квадрат и сделаем замену t = x + 1, x = t - 1, dx = dt:

$$\int \frac{x+2}{(x^2+2x+2)^3} dx = \int \frac{x+2}{((x+1)^2+1)^3} dx =$$

$$\int \frac{t+1}{(t^2+1)^3} dt = \int \frac{tdt}{(t^2+1)^3} + \int \frac{1}{(t^2+1)^3} dx = \frac{1}{2} \int \frac{d(t^2+1)}{(t^2+1)^3} + I_3 = -\frac{1}{4} \frac{1}{(t^2+1)^2} + I_3.$$

Применив рекуррентную формулу при n=2, затем при n=1, получаем

$$n=2: I_3 = \frac{1}{4} \cdot \frac{t}{(t^2+1)^2} + \frac{3}{4}I_2;$$

$$n=1: I_2 = \frac{1}{2} \cdot \frac{t}{(t^2+1)} + \frac{1}{2}I_1;$$

$$I_3 = \frac{1}{4} \cdot \frac{t}{(t^2 + 1)^2} + \frac{3}{8} \cdot \frac{t}{(t^2 + 1)} + \frac{3}{8} \arctan t + C$$
.

Подставив найденное значение для I_3 , и вернувшись к старой переменной, находим значение искомого интеграла

$$\int \frac{x+2}{\left(x^2+2x+2\right)^3} dx = \frac{3x^3+9x^2+14x+6}{8\left(x^2+2x+2\right)^2} + \frac{3}{8} \arctan(x+1) + C.$$

3.2. Алгоритм вычисления интеграла от рациональной функции.

Приведем алгоритм вычисления интеграла от произвольной рациональной функции.

1) Определяем, дробь правильная или неправильная. В случае если дробь неправильная, то есть степень многочлена в числителе не меньше, чем степень многочлена в знаменателе $(n \ge m)$, выделяем целую часть и представляем неправильную дробь в виде суммы многочлена и правильной дроби

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{T_k(x)}{Q_m(x)} .$$

- 2) Для того, чтобы проинтегрировать правильную дробь:
- 1. Знаменатель раскладываем на множители: линейные, или квадратичные, с отрицательным дискриминантом

$$Q_n(x) = a_n(x - x_1)^{\hat{k}_1} ... (x - x_r)^{k_r} (x^2 + p_1 x + q_1)^{S_1} ... (x^2 + p_l x + q_l)^{S_l}$$

$$(D_j = p_j^2 - 4q_j < 0; \quad j = 1, ..., l).$$

2. Правильную дробь представляем в виде суммы простых дробей с неопределёнными коэффициентами

$$\begin{split} &\frac{T_k(x)}{Q_m(x)} = \frac{A_1^{(1)}}{x - x_1} + \frac{A_2^{(1)}}{(x - x_1)^2} + \dots + \frac{A_{k_1}^{(1)}}{(x - x_1)^{k_1}} + \dots + \frac{A_1^{(r)}}{x - x_r} + \frac{A_2^{(r)}}{(x - x_r)^2} + \dots + \\ &+ \frac{A_{k_r}^{(r)}}{(x - x_r)^{k_r}} + \frac{B_1^{(1)}x + C_1^{(1)}}{x^2 + p_1x + q_1} + \frac{B_2^{(1)}x + C_2^{(1)}}{(x^2 + p_1x + q_1)^2} + \dots + \frac{B_{k_1}^{(1)}x + C_{k_1}^{(1)}}{(x^2 + p_1x + q_1)^{k_1}} + \\ &+ \dots + \frac{B_1^{(l)}x + C_1^{(l)}}{x^2 + p_1x + q_1} + \frac{B_2^{(l)}x + C_2^{(l)}}{(x^2 + p_1x + q_1)^2} + \dots + \frac{B_{k_l}^{(l)}x + C_{k_l}^{(l)}}{(x^2 + p_1x + q_1)^{k_l}}. \end{split}$$

- 3. Далее находим неопределённые коэффициенты (одним из двух ранее рассмотренных способов)
- 3) Вычисляем интегралы от простых дробей так, как описано в предыдущем пункте 3.1.

Пример. Вычислить интеграл $\int \frac{dx}{x^5 + x^2}$.

Решение. Подынтегральная дробь правильная. Раскладываем ее знаменатель на множители, по этому разложению выписываем представление правильной дроби в виде суммы простейших дробей с неопределенными коэффициентами

$$\frac{1}{x^5 + x^2} = \frac{1}{x^2(x+1)(x^2 - x + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{Dx + E}{x^2 - x + 1} .$$

Домножаем это равенство на знаменатель

$$1 = Ax(x^3 + 1) + B(x^3 + 1) + Cx^2(x^2 - x + 1) + (Dx + E)x^2(x + 1);$$

$$1 = Ax^4 + Ax + Bx^3 + B + Cx^4 - Cx^3 + Cx^2 + Dx^4 + Ex^3 + Dx^3 + Ex^2.$$

Затем приравниваем коэффициенты при соответственных степенях переменной и решаем полученную систему

$$\begin{vmatrix} x^4 \\ x^3 \\ 0 = A + C + D \\ 0 = B - C + E + D \\ 0 = C + E \\ x^1 \\ A = 0 \\ B = 1 \end{vmatrix}$$

$$D = -\frac{1}{3}$$
, $E = -\frac{1}{3}$, $C = \frac{1}{3}$.

Подставим найденные коэффициенты и получим представление искомого интеграла в виде суммы трех слагаемых. $\int \frac{dx}{x^5 + x^2} = \int \frac{dx}{x^2} + \frac{1}{3} \int \frac{dx}{x+1} - \frac{1}{3} \int \frac{x+1}{x^2 - x + 1} dx$.

Первые два интеграла табличные, а последний интеграл от простейшей дроби третьего типа. Вычислим его по описанному ранее алгоритму.

$$\int \frac{x+1}{x^2 - x + 1} dx = \int \frac{x+1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} dx = \left(t = x - \frac{1}{2}\right)$$

$$= \int \frac{t + \frac{3}{2}}{t^2 + \frac{3}{4}} dt = \frac{1}{2} \cdot \int \frac{d\left(t^2 + \frac{3}{4}\right)}{t^2 + \frac{3}{4}} + \frac{3}{2} \cdot \int \frac{dt}{t^2 + \frac{3}{4}} = \frac{1}{2} \ln\left(t^2 + \frac{3}{4}\right) + \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \arctan\left(\frac{2t}{\sqrt{3}}\right) + C$$

Итак, в результате искомый интеграл равен

$$\int \frac{dx}{x^5 + x^2} = -\frac{1}{x} + \frac{1}{3} \ln|x + 1| - \frac{1}{6} \ln(x^2 - x + 1) - \frac{\sqrt{3}}{3} \arctan\left(\frac{2x - 1}{\sqrt{3}}\right) + C.$$

§4. Интегрирование иррациональных функций

Интеграл от иррациональной функции сводится к вычислению интеграла от рациональной функции путём замены переменной. Рассмотрим многочлен от двух переменных степени не превосходящей натурального числа n:

$$P(u,v) = \sum_{k_1 + k_2 \le n} a_{k_1 k_2} \cdot u^{k_1} \cdot v^{k_2}$$
 . Отношение двух таких многочленов

$$R(u,v)=rac{P(u,v)}{Q(u,v)}$$
 — это рациональная функция от двух переменных.

Рассмотрим наиболее часто встречающиеся типы иррациональностей.

4.1. Интегрирование дробно-линейных иррациональностей.

Рассмотрим интеграл вида
$$\int R \left(x, \sqrt[m]{\frac{ax+b}{cx+e}} \right) dx$$
, $m = 2,3,...$;

где a,b,c,e – произвольные константы, такие что $\frac{a}{c} \neq \frac{b}{e}$.

Сделаем замену $t = \sqrt[m]{\frac{ax+b}{cx+e}}$. Покажем, что эта замена рационализирует интеграл.

Выразим подынтегральную функцию через новую переменную. Для этого x и dx нужно выразить через t:

$$t^{m} = \frac{ax+b}{cx+e}; \qquad cxt^{m} + et^{m} = ax+b;$$

$$x(ct^{m}-a) = b - et^{m}; \quad x = \frac{b - et^{m}}{ct^{m}-a};$$

$$dx = \frac{-m(ae+bc)t^{m-1}}{(ct^m-a)^2}dt.$$

Подставим эти выражения в исходный интеграл

$$I = \int R\left(t, \frac{b - et^m}{ct^m - a}\right) \cdot \frac{-m(ae + bc)t^{m-1}}{\left(ct^m - a\right)^2} \cdot dt.$$

В итоге получаем интеграл от рациональной функции, вычисление которого подробно рассмотрено ранее.

Пример 1. Вычислить интеграл $\int \sqrt[3]{\frac{1-x}{1+x}} \cdot \frac{dx}{x}$.

Решение. Сделаем замену переменной $t = \sqrt[3]{\frac{1-x}{1+x}}$. Выразим подынтегральную

функцию через новую переменную. Возведем последнее равенство в третью степень

 $t^{3} = \frac{1-x}{1+x}$, отсюда старая переменная выражается через новую переменную

рациональной функцией $x = \frac{1-t^3}{1+t^3}$. Находим дифференциал $dx = -\frac{6t^2 dt}{(1+t^3)^2}$ и

подставляем в первоначальный интеграл. Получаем интеграл от рациональной

функции
$$-\int t \cdot \frac{1+t^3}{1-t^3} \cdot \frac{6t^2 dt}{(1+t^3)^2} = -\int \frac{6t^3 dt}{(1-t^3)(1+t^3)}$$
.

Подынтегральная дробь является правильной. Её нужно представить в виде суммы простейших дробей с неопределенными коэффициентами

$$-\frac{6t^3}{(1-t^3)(1+t^3)} = \frac{A}{1-t} + \frac{B}{1+t} + \frac{Ct+D}{1+t+t^2} + \frac{Et+F}{1-t+t^2}.$$

Затем надо найти неопределенные коэффициенты, проинтегрировать простейшие дроби и получить значение исходного интеграла. Для окончательного ответа нужно

вернуться к первоначальной переменной, подставив $t = \sqrt[3]{\frac{1-x}{1+x}}$.

Пример 2. Вычислить интеграл
$$I = \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$
.

Решение. В этом интеграле два корня из одного и того же выражения, но разных степеней. Нужно за новую переменную обозначить корень, степень которого является наименьшим общим кратным этих двух степеней.

Так как HOK(2,3) = 6, то сделаем замену $t = \sqrt[6]{x}$; $x = t^6$; $dx = 6t^5 dt$.

Подставив эти выражения в исходный интеграл, получаем интеграл от неправильной рациональной дроби. Представляем ее в виде суммы многочлена и правильной рациональной дроби, которая является простейшей:

$$I = \int \frac{6t^5 dt}{t^3 + t^2} = \int \frac{6t^3 dt}{t+1} = 6\int \left(t^2 - t + 1 - \frac{1}{t+1}\right) dt = 6\left(\frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t+1|\right) + C.$$

Возвращаясь к первоначальной переменной, получаем ответ

$$I = 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln(\sqrt[6]{x} + 1) + C$$

Пример 3. Вычислить интеграл $\int \sqrt{(x-1)(x-2)} dx$.

Решение. Этот интеграл можно привести к виду, рассматриваемому в этом пункте.

$$\int \sqrt{(x-1)^2 \cdot \frac{(x-2)}{(x-1)}} dx = \int |x-1| \cdot \sqrt{\frac{x-2}{x-1}} dx .$$

Область определения подынтегральной функции x < 1, x > 2.

Интеграл вычисляем с помощью замены $t = \sqrt{\frac{x-2}{x-1}}$.

Возводя в квадрат, находим

$$x = \frac{t^2 - 2}{t^2 - 1}$$
; $x - 1 = -\frac{1}{t^2 - 1}$; $dx = \frac{2tdt}{(t^2 - 1)^2}$.

Подставив эти выражения в интеграл, получаем при x > 2:

$$\int (x-1) \cdot \sqrt{\frac{x-2}{x-1}} dx = -2 \int \frac{t^2}{(t^2-1)^3} dt .$$

Далее нужно подынтегральную дробь разложить на сумму простейших дробей

$$\frac{t^2}{(t^2-1)^3} = \frac{t^2}{(t-1)^3(t+1)^3} = \frac{A}{t-1} + \frac{B}{(t-1)^2} + \frac{C}{(t-1)^3} + \frac{D}{t+1} + \frac{E}{(t+1)^2} + \frac{F}{(t+1)^3}.$$

Затем найти неопределенные коэффициенты и проинтегрировать простейшие дроби. Если x < 1, то получаем тот же интеграл, только с противоположным знаком.

4.2. Подстановки Эйлера.

Подстановки Эйлера используются для вычисления интеграла вида $\int R(x, \sqrt{ax^2 + bx + c}) \, dx$

Он рационализируется в трёх случаях.

1 случай: a > 0.

В этом случае делаем замену $\sqrt{ax^2 + bx + c} = \sqrt{ax} + t$, где перед слагаемыми \sqrt{ax} и t могут стоять произвольные знаки плюс или минус. Возводим обе части последнего равенства в квадрат и выражаем старую переменную через новую переменную:

$$ax^{2} + bx + c = ax^{2} + 2\sqrt{a}xt + t^{2}; \quad x(b - 2\sqrt{a}t) = t^{2} - c; \quad x = \frac{t^{2} - c}{b - 2\sqrt{a}t}.$$

Затем находим значение корня и дифференциала через новую переменную

$$\sqrt{ax^{2} + bx + c} = \sqrt{a} \cdot \frac{t^{2} - c}{b - 2\sqrt{at}} + t = \frac{-\sqrt{at^{2} + bt} - \sqrt{ac}}{b - 2\sqrt{at}};$$

$$dx = \frac{2t(b - 2\sqrt{at}) + 2\sqrt{a}(t^{2} - c)}{(b - 2\sqrt{at})^{2}}dt = \frac{-2\sqrt{at^{2} + 2bt} - 2\sqrt{ac}}{(b - 2\sqrt{at})^{2}}dt.$$

Подставляя все в исходный интеграл, получаем интеграл от рациональной функции

$$I = \int R \left(\frac{t^2 - c}{b - 2\sqrt{at}}, \frac{-\sqrt{at^2 + bt} - \sqrt{ac}}{b - 2\sqrt{at}} \right) \cdot \frac{-2\sqrt{at^2 + 2bt} - 2\sqrt{ac}}{(b - 2\sqrt{at})^2} dt .$$

2 случай: c > 0.

В этом случае делаем замену $\sqrt{ax^2 + bx + c} = xt + \sqrt{c}$.

Возводим обе части последнего равенства в квадрат и выражаем старую переменную через новую переменную:

$$ax^{2} + bx + c = x^{2}t + 2\sqrt{c}xt + c;$$
 $ax + b = xt^{2} + 2\sqrt{c}t;$

$$x(a-t^2) = 2\sqrt{ct} - b; \quad x = \frac{2\sqrt{ct} - b}{a-t^2}.$$

Затем находим значение корня и дифференциала через новую переменную

$$\sqrt{ax^2 + bx + c} = \frac{2\sqrt{c}t^2 - bt}{a - t^2} + \sqrt{c}; \qquad dx = \frac{2\sqrt{c}(a - t^2) + 2t(2\sqrt{c}t - b)}{(a - t^2)^2}dt.$$

Подставляя все в исходный интеграл, получаем интеграл от рациональной функции.

3 случай: $D = b^2 - 4ac > 0$.

Уравнение $ax^2 + bx + c = 0$ имеет два различных действительных корня x_1 и x_2 .

В этом случае делаем замену $\sqrt{ax^2 + bx + c} = t(x - x_1)$.

Возводим обе части последнего равенства в квадрат и выражаем старую переменную через новую переменную:

$$a(x-x_1)(x-x_2) = t^2(x-x_1)^2; \quad ax-ax_2 = t^2x-t^2x_1; \quad x = \frac{ax_2-t^2x_1}{a-t^2}$$

Затем выражаем через новую переменную значение корня и дифференциала

$$x - x_1 = \frac{ax_2 - t^2x_1 - ax_1 + x_1t^2}{a - t^2} = \frac{a(x_2 - x_1)}{a - t^2};$$

$$\sqrt{ax^2 + bx + c} = \frac{a(x_2 - x_1)t}{a - t^2};$$

$$dx = \frac{-2tx_1(a - t^2) + 2t(ax_2 - t^2x_1)}{(a - t^2)^2}dt.$$

Подставляем эти выражения в исходный интеграл и вычисляем интеграл от рациональной функции.

Пример 4.

Вывести формулу для вычисления табличного интеграла $\int \frac{dx}{\sqrt{x^2 + a}}$.

Решение. Коэффициент при x^2 положительный, значит подходит первый случай. Сделаем замену $\sqrt{x^2+a}=-x+t$. Возведем в квадрат и выразим старую переменную через новую переменную

$$x^{2} + a = x^{2} - 2xt + t^{2}; \quad x = \frac{t^{2} - a}{2t}.$$

Затем выражаем через новую переменную значение корня и дифференциала

$$\sqrt{x^2 + a} = -\frac{t^2 - a}{2t} + t = \frac{t^2 + a}{2t}; \qquad dx = \frac{t^2 + a}{2t^2} dt.$$

Подставив эти выражения под интеграл, получим табличный интеграл

$$\int \frac{dx}{\sqrt{x^2 + a}} = \int \frac{2t}{t^2 + a} \cdot \frac{t^2 + a}{2t^2} dt = \int \frac{dt}{t} = \ln|t| + C = \ln|x + \sqrt{x^2 + a}| + C.$$

Пример 5. Вычислить интеграл
$$I = \int \frac{dx}{x + \sqrt{x^2 - x + 1}}$$
.

Решение. В данном примере подходит и первый и второй случаи. Применим вторую подстановку Эйлера, сделаем замену $\sqrt{x^2 - x + 1} = xt + 1$.

Возведем в квадрат $x^2 - x + 1 = x^2 \cdot t^2 + 2xt + 1$, затем поделим на x, получим $x - 1 = xt^2 + 2t$. Отсюда выражаем старую переменную, затем корень и дифференциал через новую переменную.

$$x = \frac{2t+1}{1-t^2}; \quad \sqrt{x^2 - x + 1} = \frac{2t^2 + t}{1-t^2} + 1 = \frac{t^2 + t + 1}{1-t^2};$$
$$dx = \frac{2(1-t^2) + 2t(2t+1)}{(1-t^2)^2} dt = \frac{2(t^2 + t + 1)}{(1-t^2)^2} dt.$$

Подставим полученные выражения в исходный интеграл, получим интеграл от рациональной функции

интеграл от рациональной функции
$$I = \int \frac{1}{\frac{2t+1}{1-t^2}} \frac{1}{t^2+t+1} \cdot \frac{2(t^2+t+1)}{(1-t^2)^2} dt = 2\int \frac{t^2+t+1}{(t^2+3t+2)(1-t^2)} dt .$$

Подынтегральная дробь является правильной, её нужно представить в виде суммы простейших дробей $\frac{t^2+t+1}{(t+2)(1-t)(t+1)^2} = \frac{A}{t+1} + \frac{B}{(t+1)^2} + \frac{C}{t+2} + \frac{D}{1-t} \ ,$ затем проинтегрировать эти дроби.

4.3. Сведение интеграла от иррациональной функции к интегралу от тригонометрической функции.

Подстановки Эйлера, играя важную теоретическую роль, на практике приводят обычно к громоздким выкладкам, поэтому прибегать к ним надо в крайних случаях, когда не удается более просто вычислить интеграл другим способом. Одним из таких способов является следующий. Если в квадратном трехчлене $ax^2 + bx + c$ выделить полный квадрат, то есть привести его к виду

$$a\left(x+\frac{b}{2a}\right)^2+\left(c-\frac{b^2}{4a}\right)\quad \text{и положить }\ t=x+\frac{b}{2a}\ , \text{ то интеграл}$$

 $\int R(x, \sqrt{ax^2 + bx + c}) dx$ приводится к одному из трех видов:

$$\int R_1(t,\sqrt{k^2-t^2})dt$$
, $\int R_2(t,\sqrt{t^2-k^2})dt$, $\int R_3(t,\sqrt{k^2+t^2})dt$.

Сделав в первом из этих интегралов подстановку $t = k \cdot \sin u$, во втором

$$t = \frac{k}{\sin u}$$
, в третьем $t = k \cdot tg \, u$, получаем интегралы вида $\int R(\sin u, \cos u) \, du$.

Способы их вычисления будут рассмотрены в следующем параграфе.

Пример 6. Вычислить интеграл
$$\int \frac{dx}{(x^2 + x + 1) \cdot \sqrt{x^2 + x - 1}}$$
.

Решение. Выделим полный квадрат в подкоренном выражении:

$$\sqrt{x^2 + x - 1} = \sqrt{\left(x + \frac{1}{2}\right)^2 - \frac{5}{4}}$$
. Сделаем замену $t = x + \frac{1}{2}$.

Подставляя в исходный интеграл $x = t - \frac{1}{2}$, dx = dt, получаем

$$\int \frac{dt}{\left(t^2 + \frac{3}{4}\right) \cdot \sqrt{t^2 - \frac{5}{4}}}$$
. В этом интеграле делаем замену $t = \frac{\sqrt{5}}{2\sin u}$,

при этом мы избавляемся от иррациональности, так как

$$\sqrt{t^2 - \frac{5}{4}} = \frac{\sqrt{5}}{2} \cdot \sqrt{\frac{1}{(\sin u)^2} - 1} = \frac{\sqrt{5}}{2} |ctg u| , dt = -\frac{\sqrt{5}}{2} \cdot \frac{\cos u \, du}{(\sin u)^2} .$$

Подставляя эти выражения в интеграл в случае, если $ctg \, u > 0$, затем упрощая подынтегральное выражение, получаем

$$-4\int \frac{\sin u \, du}{5 + 3\sin^2 u} = -4\int \frac{\sin u \, du}{8 - 3\cos^2 u} = \frac{4}{\sqrt{3}}\int \frac{d(\sqrt{3}\cos u)}{(\sqrt{8})^2 - (\sqrt{3}\cos u)^2} =$$

$$= \frac{4}{\sqrt{3}} \cdot \frac{1}{2\sqrt{8}} \ln \left| \frac{\sqrt{3} \cos u + \sqrt{8}}{\sqrt{3} \cos u - \sqrt{8}} \right| + C = \frac{1}{\sqrt{6}} \ln \left| \frac{\sqrt{3} \cos u + \sqrt{8}}{\sqrt{3} \cos u - \sqrt{8}} \right| + C \ , \text{ где } u = \arcsin \frac{\sqrt{5}}{2x+1}.$$

Возвращаясь к первоначальной переменной, получаем

$$\int \frac{dx}{(x^2+x+1)\sqrt{x^2+x-1}} = \frac{1}{\sqrt{6}} \ln \left| \frac{(2x+1)\sqrt{2} + \sqrt{3(x^2+x-1)}}{(2x+1)\sqrt{2} - \sqrt{3(x^2+x-1)}} \right| + C.$$

Аналогично интеграл вычисляется в случае, если ctgu < 0.

4.4. Интегрирование дифференциального бинома.

Дифференциальный бином или биномиальный дифференциал, это интеграл вида $I = \int x^m \cdot (a + bx^n)^p dx$, где $m, n, p \in \mathbf{Q}$; $a, b \in \mathbf{R}$.

Пафнутий Львович Чебышев доказал, что он сводится к интегралу от рациональной функции в трёх случаях.

 $\frac{1\ \text{случай.}}{t=x^{\frac{1}{\lambda}}}$ Число р является целым $(p\in\mathbf{Z})$. В этом случае делаем замену $t=x^{\frac{1}{\lambda}}=\sqrt[\lambda]{x}$, где λ — наименьший общий знаменатель дробей m и n.

2 случай.
$$p \notin \mathbb{Z}$$
 , $\frac{m+1}{n} \in \mathbb{Z}$. Замена $t = (a+bx^n)^{\frac{1}{\lambda}}$, где λ — знаменатель дроби p .

<u>3 случай.</u> $p \notin \mathbf{Z}$, $\frac{m+1}{n} + p \in \mathbf{Z}$. Замена $t = (ax^{-n} + b)^{\frac{1}{\lambda}}$, где λ – знаменатель дроби p.

Доказательство.

<u>1 случай.</u> Приведём дроби $m = \frac{k}{l}$ и $n = \frac{s}{q}$ к общему знаменателю $\lambda = \mathrm{HOK}(l,q)$.

Тогда $m = \frac{k_1}{\lambda}$, $n = \frac{s_1}{\lambda}$; k_1 , s_1 , $\lambda \in \mathbf{Z}$. В этом случае интеграл рационализируется

заменой $t = x^{\frac{1}{\lambda}} = \sqrt[\lambda]{x}$; $x = t^{\lambda}$; $dx = \lambda t^{\lambda - 1} dt$.

Переходя к новой переменной, получаем интеграл от рациональной функции $I = \int t^{k_1} (a+bt^{s_1})^p \, \lambda t^{\lambda-1} dt$.

<u>2 случай</u>. Число р не является целым. Представим его в виде несократимой дроби $p = \frac{k}{\lambda} \; ; \; k, \lambda \in {\bf Z} \, .$

Сначала сделаем в интеграле замену $z = x^n$; $x = z^{\frac{1}{n}}$; $dx = \frac{1}{n} \cdot z^{\frac{1}{n}-1} dz$.

В результате получаем интеграл

$$I = \int z^{\frac{m}{n}} (a+bz)^{p} \cdot \frac{1}{n} \cdot z^{\frac{1}{n}-1} dz = \frac{1}{n} \int z^{\frac{m+1}{n}-1} \cdot (a+bz)^{p} dz.$$

Если $\frac{m+1}{n} \in \mathbf{Z}$, то интеграл приводится к интегралу от рациональной функции

заменой $t=(a+bz)^{\frac{1}{\lambda}}; \quad z=\frac{1}{b}(t^{\lambda}-a),$ где λ - знаменатель дроби р.

В этом случае получаем интеграл от рациональной функции

$$I = \frac{1}{n} \int \left(\frac{1}{b} (t^{\lambda} - a) \right)^{\frac{m+1}{n} - 1} \cdot t^{k} \cdot \frac{\lambda}{b} \cdot t^{\lambda - 1} dt, \text{ где } t = (a + bx^{n})^{\frac{1}{\lambda}}.$$

 $\underline{3}$ случай. Как и во втором случае с помощью замены $z=x^n$, сначала получаем интеграл $I=\frac{1}{n}\int z^{\frac{m+1}{n}-1}\cdot (a+bz)^p\,dz$.

Преобразовав выражение $a + bz = z \cdot (az^{-1} + b)$,

приводим интеграл к виду $I = \frac{1}{n} \int z^{\frac{m+1}{n} + p - 1} \cdot (az^{-1} + b)^p dz$.

Если $\frac{m+1}{n}+p\in {\bf Z}$ и λ – знаменатель дроби p, то замена

$$t = (az^{-1} + b)^{\frac{1}{\lambda}}; \quad z = \frac{a}{t^{\lambda} - b}; \quad dz = -\frac{a \lambda t^{\lambda - 1} dt}{(t^{\lambda} - b)^2}$$

позволяет получить интеграл от рациональной функции

$$I = -\frac{a\lambda}{n} \int \left(\frac{a}{t^{\lambda} - b}\right)^{\frac{m+1}{n} + p - 1} \cdot t^{k} \cdot \frac{t^{\lambda - 1}dt}{\left(t^{\lambda} - b\right)^{2}},$$
где $t = (ax^{-n} + b)^{\frac{1}{\lambda}}.$

Пример 7. Вычислить интеграл $\int \frac{dx}{\sqrt[4]{1+x^4}}$.

Решение. Запишем интеграл в виде дифференциального бинома

$$\int \frac{dx}{\sqrt[4]{1+x^4}} = \int (1+x^4)^{-\frac{1}{4}} dx .$$

В данном случае число $p = -\frac{1}{4}$ не является целым. Значит, первый случай не подходит. Числа m = 0, n = 4; проверяем, подходит ли второй случай.

Число $\frac{m+1}{n} = \frac{1}{4}$ также не является целым, поэтому второй случай тоже

не подходит. Число $\frac{m+1}{n} + p = 0$ является целым, значит подходит третий случай

для подстановок Чебышева. В этом случае интеграл рационализируется заменой

$$t = \sqrt[4]{x^{-4} + 1}; \quad x^4 = \frac{1}{t^4 - 1}; \quad x = \frac{1}{\sqrt[4]{t^4 - 1}}; \quad dx = -\frac{t^3 dt}{(t^4 - 1)^{5/4}}; \quad x^4 + 1 = \frac{t^4}{t^4 - 1}.$$

Подставляя эти выражения в исходный интеграл, получаем интеграл от рациональной функции

$$I = \int \frac{(t^4 - 1)^{1/4}}{t} \cdot \frac{t^3 dt}{(t^4 - 1)^{5/4}} = \int \frac{t^2 dt}{(t^4 - 1)}$$
. Как его вычислять, описано ранее.

§5. Интегрирование тригонометрических функций

5.1. Интегралы вида $\int R(\sin x, \cos x) dx$.

Рассмотрим случай, когда под интегралом стоит рациональная функция от аргументов $\cos x$ и $\sin x$, то есть интеграл вида $\int R(\sin x, \cos x) dx$. Его можно свести к интегралу от рациональной функции в следующих случаях.

1) Универсальная подстановка подходит всегда, но часто приводит к громоздким выражениям, поэтому пользоваться ею не всегда целесообразно.

Основана универсальная подстановка на известных тригонометрических формулах

$$\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}; \qquad \cos x = \frac{1 - tg^2\frac{x}{2}}{1 + tg^2\frac{x}{2}}.$$

Обозначая через новую переменную $t=tg\,\frac{x}{2}$, получаем рациональное выражение для подынтегральной функции

$$\sin x = \frac{2t}{1+t^2}$$
; $\cos x = \frac{1-t^2}{1+t^2}$; $dx = \frac{2dt}{1+t^2}$.

Таким образом, исходный интеграл является интегралом от рациональной функции

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2dt}{1+t^2} .$$

- 2) В случае, если при подстановке в функцию $R(\sin x, \cos x)$ выражения $(-\sin x)$ вместо $\sin x$ общий знак функции меняется, то есть $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, то подходит замена переменной $t = \cos x$.
- 3) В случае, если при подстановке в функцию $R(\sin x, \cos x)$ выражения $(-\cos x)$ вместо $\cos x$ общий знак функции меняется, то есть $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то подходит замена $t = \sin x$.
- 4) В случае, если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то подходит замена t = tgx или t = ctgx.

Пример 1. Вычислить интеграл $I = \int \frac{\cos^3 x \, dx}{\sin^7 x}$.

Решение. Данный пример можно решить несколькими способами.

1) Сделаем универсальную подстановку $t = tg \frac{x}{2}$, тогда

$$\sin x = \frac{2t}{1+t^2}$$
; $\cos x = \frac{1-t^2}{1+t^2}$; $dx = \frac{2dt}{1+t^2}$.

Получим следующий интеграл

$$I = \int \left(\frac{1-t^2}{1+t^2}\right)^3 \cdot \left(\frac{1+t^2}{2t}\right)^7 \cdot \frac{2dt}{1+t^2} = \frac{2}{2^7} \int \frac{(1-t^4)^3}{t^7} dt =$$

$$= \frac{1}{64} \int \frac{1-3t^4+3t^8-t^{12}}{t^7} dt = \frac{1}{64} \left(-\frac{1}{6t^6} + \frac{3}{2t^2} + \frac{3t^2}{2} - \frac{t^6}{6}\right) + C.$$

Возвращаясь к первоначальной переменной, получаем

$$I = \frac{1}{64} \left(-\frac{1}{6tg^{6} \frac{x}{2}} + \frac{3}{2tg^{2} \frac{x}{2}} + \frac{3tg^{2} \frac{x}{2}}{2} - \frac{tg^{6} \frac{x}{2}}{6} \right) + C =$$

$$= \frac{3}{128} \left(tg^{2} \frac{x}{2} + ctg^{2} \frac{x}{2} \right) - \frac{1}{384} \left(tg^{6} \frac{x}{2} + ctg^{6} \frac{x}{2} \right) + C.$$

2) Подставим в функцию $R(\sin x, \cos x) = \frac{\cos^3 x}{\sin^7 x}$ вместо выражения $\sin x$ выражение $(-\sin x)$, получим $R(-\sin x, \cos x) = -\frac{\cos^3 x}{\sin^7 x} = -R(\sin x, \cos x)$.

Знак функции поменялся, значит можно сделать замену $t = \cos x$, $dt = -\sin x dx$, $\sin^2 x = 1 - t^2$. Подставив эти выражения в исходный интеграл, получим интеграл от рациональной функции

$$I = \int \frac{\cos^3 x \sin x \, dx}{\sin^8 x} = -\int \frac{t^3 dt}{(1 - t^2)^4}.$$

В этом интеграле можно сделать еще одну замену переменной $u = 1 - t^2$; du = -2tdt. Тогда получаем

$$I = \frac{1}{2} \int \frac{t^2(-2tdt)}{(1-t^2)^4} = \frac{1}{2} \int \frac{(1-u)du}{u^4} = \frac{1}{2} \left(\int \frac{du}{u^4} - \int \frac{du}{u^3} \right) = -\frac{1}{6u^3} + \frac{1}{4u^2} + C.$$

Возвращаясь к исходной переменной $u = 1 - \cos^2 x = \sin^2 x$, имеем

$$I = -\frac{1}{6\sin^6 x} + \frac{1}{4\sin^4 x} + C.$$

3) Подставим в функцию $R(\sin x, \cos x) = \frac{\cos^3 x}{\sin^7 x}$ вместо выражения $\cos x$ выражение $(-\cos x)$, получим $R(\sin x, -\cos x) = -\frac{\cos^3 x}{\sin^7 x} = -R(\sin x, \cos x)$.

Знак функции поменялся, значит можно сделать замену

 $t = \sin x$, $dt = \cos x \, dx$, $\cos^2 x = 1 - t^2$. Подставив эти выражения в исходный интеграл, получим интеграл от рациональной функции

$$I = \int \frac{\cos^2 x \cos x \, dx}{\sin^7 x} = \int \frac{(1-t^2)}{t^7} dt = -\frac{1}{6t^6} + \frac{1}{4t^4} + C = -\frac{1}{6\sin^6 x} + \frac{1}{4\sin^4 x} + C.$$

4) Подставим в функцию $R(\sin x, \cos x) = \frac{\cos^3 x}{\sin^7 x}$ вместо выражений $\cos x$ и $\sin x$ выражения $(-\cos x)$ и $(-\sin x)$, получим

$$R(-\sin x, -\cos x) = \frac{(-\cos x)^3}{(-\sin x)^7} = \frac{\cos^3 x}{\sin^7 x} = R(\sin x, \cos x).$$

Знак функции не поменялся, значит можно сделать замену t = ctgx, $dt = -\frac{dx}{\sin^2 x}$.

Перепишем интеграл в виде, удобном для данной подстановки

$$I = \int ctg^{3}x \cdot \frac{1}{\sin^{2}x} \cdot \frac{dx}{\sin^{2}x} = -\int ctg^{3}x \cdot (1 + ctg^{2}x) \cdot d(ctgx) =$$
$$= -\int (t^{3} + t^{5})dt = -\frac{t^{4}}{4} - \frac{t^{6}}{6} + C = -\frac{ctg^{4}x}{4} - \frac{ctg^{6}x}{6} + C.$$

Конечно, не в каждом примере получится использовать все четыре указанных подстановки. Некоторые примеры можно только с помощью одной из подстановок свести к интегралу от рациональной функции. Иногда это вообще невозможно сделать.

5.2. Использование тригонометрических формул при вычислении интегралов.

Кроме вышеуказанных подстановок полезно использовать всевозможные тригонометрические формулы для упрощения подынтегрального выражения.

Пример 2. Вычислить интеграл $\int \sin 5x \cdot \cos x \, dx$.

Решение. Применим формулу $\sin \alpha \cdot \cos \beta = \frac{1}{2} \left(\sin(\alpha + \beta) + \sin(\alpha - \beta) \right)$, позволяющую преобразовать подынтегральное произведение в сумму $\int \sin 5x \cdot \cos x \, dx = \frac{1}{2} \int (\sin 6x + \sin 4x) dx = -\frac{1}{12} \cos 6x - \frac{1}{8} \cos 4x + C \, .$

Пример 3. Вычислить интеграл $I = \int \sin^2 x \cdot \cos^4 x \, dx$.

Решение. Используем сначала формулу $\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$ синуса двойного угла

$$I = \int \sin^2 x \cdot \cos^4 x \, dx = \int (\sin^2 x \cdot \cos^2 x) \cos^2 x \, dx = \frac{1}{4} \int \sin^2 2x \cdot \cos^2 x \, dx.$$

Затем, преобразуем подынтегральное выражение по формулам

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
 и $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$ понижения степени
$$I = \frac{1}{4} \int \sin^2 2x \cdot \cos^2 x \, dx = \frac{1}{4} \int \frac{1 - \cos 4x}{2} \cdot \frac{1 + \cos 2x}{2} \, dx =$$

$$= \frac{1}{16} \int (1 - \cos 4x + \cos 2x - \cos 4x \cdot \cos 2x) \, dx =$$

$$= \frac{1}{16} \left(x - \frac{1}{4} \sin 4x + \frac{1}{2} \sin 2x \right) - \frac{1}{32} \int (\cos 6x + \cos 2x) \, dx =$$

$$= \frac{x}{16} - \frac{1}{64} \cdot \sin 4x + \frac{1}{32} \cdot \sin 2x - \frac{1}{192} \cdot \sin 6x - \frac{1}{64} \cdot \sin 2x + C =$$

$$= \frac{x}{16} + \frac{1}{64} \cdot \sin 2x - \frac{1}{64} \cdot \sin 4x - \frac{1}{192} \cdot \sin 6x + C.$$

Пример 4. Вычислить интеграл
$$I = \int \frac{dx}{\sin(\alpha + x) \cdot \sin(x + \beta)}$$
.

Решение. Применим искусственный прием: умножим числитель и знаменатель подынтегральной дроби на константу $\sin(\alpha - \beta) = \sin((x + \alpha) - (x + \beta))$.

При этом
$$I = \frac{1}{\sin(\alpha - \beta)} \cdot \int \frac{\sin((x + \alpha) - (x + \beta))}{\sin(\alpha + x) \cdot \sin(x + \beta)} dx.$$

Затем воспользуемся формулой $\sin(u-v) = \sin u \cdot \cos v - \cos u \cdot \sin v$ в числителе:

$$I = \frac{1}{\sin(\alpha - \beta)} \cdot \int \frac{\sin(x + \alpha) \cdot \cos(x + \beta) - \cos(x + \alpha) \cdot \sin(x + \beta)}{\sin(\alpha + x) \cdot \sin(x + \beta)} dx.$$

Поделив почленно дробь под интегралом, получаем окончательный ответ.

$$I = \frac{1}{\sin(\alpha - \beta)} \cdot \left(\int \frac{\sin(x + \alpha) \cdot \cos(x + \beta)}{\sin(\alpha + x) \cdot \sin(x + \beta)} dx - \int \frac{\cos(x + \alpha) \cdot \sin(x + \beta)}{\sin(\alpha + x) \cdot \sin(x + \beta)} dx \right) =$$

$$= \frac{1}{\sin(\alpha - \beta)} \cdot \left(\int \frac{\cos(x + \beta)}{\sin(x + \beta)} dx - \int \frac{\cos(x + \alpha)}{\sin(\alpha + x)} dx \right) =$$

$$= \frac{1}{\sin(\alpha - \beta)} \cdot \left(\ln|\sin(x + \beta)| - \ln|\sin(x + \alpha)| \right) + C.$$

Понятие о неберущихся интегралах

Не все интегралы выражаются в элементарных функциях. Те интегралы, которые нельзя выразить в элементарных функциях, называются неберущимися. Приведем основные примеры таких интегралов.

Например, $\int e^{-x^2} dx$ — интеграл Пуассона, он широко используется в статистической физике, в теории теплопроводности и диффузии.

Интегралы Френеля $\int \cos x^2 dx$ и $\int \sin x^2 dx$ широко применяются в оптике.

Часто встречаются в приложениях следующие интегралы:

$$\int \frac{\sin x}{x} dx = si(x) - \text{синус интегральный,}$$

$$\int \frac{\cos x}{x} dx = ci(x) - \text{косинус интегральный,}$$

$$\int \frac{e^x}{x} dx = \int \frac{dy}{\ln y} = li(x) - \text{интегральный логарифм.}$$

Неберущимися являются также эллиптические интегралы. Они имеют вид

$$\int R(x, \sqrt{ax^3 + bx^2 + cx + d}) dx$$
 (1)

$$\int R(x, \sqrt{ax^4 + bx^3 + cx^2 + dx + e}) dx$$
 (2)

Покажем, что вычисление интеграла (1) сводится к вычислению интеграла (2). Так как любой кубический многочлен с действительными коэффициентами имеет хотя бы один действительный корень x_0 , то его можно разложить на множители

$$ax^3 + bx^2 + cx + d = a(x - x_0)(x^2 + px + q)$$
. Тогда заменив $x - x_0 = t^2$, получим $\sqrt{ax^3 + bx^2 + cx + d} = t\sqrt{a_1t^4 + b_1t^3 + c_1t^2 + d_1t + e_1}$.

Таким образом, вычисление эллиптического интеграла вида (1) сводится к вычислению эллиптического интеграла вида (2).

После некоторых преобразований вычисление интеграла (2) сводится к вычислению трёх интегралов

$$\int \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}};$$

$$\int \frac{z^2dz}{\sqrt{(1-z^2)(1-k^2z^2)}};$$

$$\int \frac{dz}{(1-kz^2)\sqrt{(1-z^2)(1-k^2z^2)}}.$$

Они называются соответственно эллиптическими интегралами первого, второго и третьего родов.

Заменой $z = \sin \varphi$ эти интегралы сводятся к следующим:

$$\int \frac{d\varphi}{\sqrt{1-k^2\sin\varphi}};$$

$$\int \sqrt{1-k^2\sin^2\varphi} \,d\varphi;$$

$$\int \frac{d\varphi}{(1+h\sin^2\varphi)\sqrt{1-k^2\sin^2\varphi}}.$$

Они называются эллиптическими интегралами первого, второго и третьего родов в форме Лежандра.

Для всех перечисленных интегралов составлены таблицы. Ввиду важности приложений эти функции изучены с такой же полнотой, как и простейшие элементарные функции.

Список литературы

- 1. Кудрявцев Л.Д. Курс математического анализа, том 1. М.: Дрофа, 2006.
- 2. Ильин В.А., Позняк Э.Г. Основы математического анализа. М.: ФИЗМАТЛИТ, 2009.
- 3. Фихтенгольц Г.М. Основы математического анализа, том 1 u том 2. СПб.: Лань, 2008.
- 4. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. *Математический анализ в вопросах и задачах.* М.: ФИЗМАТЛИТ, 2002.
- 5. Берман Г.Н. *Сборник задач по курсу математического анализа.* СПб.: Лань, 2007.
- 6. Демидович Б.П. *Сборник задач и упражнений по математическому анализу.* М.: ООО Изд-во Астрель, 2009.