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Foreword

Scientific method relies on measurements of quantitative characteristics
of phenomena of study. In economics as well as on other social sciences

entities under study are not unified and they differ in their quantitative
characteristics in unpredictable way. The differences are usually caused
by simultaneous influence of many uncontrolled factors. Nevertheless, a
sort of stability can be observed when relative frequencies are taken into
account. Probability theory and mathematical statistics were designed to
catch and model this type of randomness in many areas of science. Thus the
course is intended to prepare students for analytic and researcher activities
in economics. A bachelor in Economics is supposed to be able to gather
and process statistical data necessary for current economic calculations, as
well as be able to develop and test econometric models. By the end of this
course, students will be able to develop simple probabilistic models of real-
life economic processes, they will be prepared for reading and understanding
research reports in stochastic econometrics, prepared to apply probabilistic
and statistical methodology to their own research work.

The specifics of this course is a small amount of lecture hours. Hence
the Author had to select topics and examples carefully. The preference
was given to random variables and to those probability theory results ex-
ploited in mathematical statistics. For instance, basic probability theory
was explained in terms of events generated by random variables, the classic
probability appears in form of uniform joint probability distribution. The
examples in this coursebook concern different aspects of economics. Some
of the examples take several lectures to develop. Interested reader will find
additional practical applications and informative discussion of probability
theory and statistics in books [1, 2, 3, 4, 5, 6, 7].

Standard mathematical notations are used throughout the book. A
white square � marks the end of a proof, and symbols ��� delimit the end
of an example. Numbers in parentheses label equations, e.g. (3.5) means
formula number 5 in Lecture 3, numbers in square brackets refer to the list
of references in the end of the book.
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Lecture

1
Randomness and probability. Basic
notions of probability theory

Scientific method is a cornerstone in modern natural and social sciences.
Since 17th century, acquiring new knowledge is based on collecting empirical
data. As a rule, such data is a result of measurements. One conducts an
experiment or observes a natural process paying attention to a selected
aspect of an object. Such an experiment (in physics, chemistry, biology,
etc) or an observation (in economics, astronomy, sociology, psychology, etc)
must be planned beforehand. In particular, conditions should be predefined
as precisely as possible. To represent the measurement results scientists use
variables — quantities that can be given any value from a set of values. For
example, a motion of a solid body in space (Fig. 1.1) can be described by
six variables: the spatial Cartesian coordinates (𝑥, 𝑦, 𝑧), and the velocity
components (𝑣𝑥, 𝑣𝑦, 𝑣𝑧). These quantities vary in time, they are functions
of a time variable, 𝑡. Gross Domestic Product (the overall market values of
goods and services produced by labour and capital during one year) is an
important measure of an economy of a country (Fig. 1.2).

(𝑣𝑥, 𝑣𝑦, 𝑥𝑧)

𝑧

𝑥

𝑦

Figure 1.1. Motion of a solid body. A blue curved line is its trajectory. Gray
arrows indicate several sequential positions of the body. Dashed lines give its

instant Cartesian coordinates. Velocity is depicted by the red thick arrow

In what follows we will consider the notions of experiments, conditions
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Figure 1.2. Countries by GDP $ trillion, with GDP over $1 trillion in 2010
(Source: World Bank Open Data. http://data.worldbank.com)

of experiment, variables1 as elementary and undefinable notions just like
points, lines, and planes are undefinable in geometry, or a mass, space,
and time in physics. Many sciences use such notions taken from our life
experience without strict definition. Such notions are usually explained by
many examples.

Now let us choose an interval (𝑎, 𝑏) of values of a variable 𝑋.

𝑥
𝑎 𝑏

Figure 1.3. A set of values 𝑥 such that 𝑎 < 𝑥 < 𝑏

After an observation of the variable 𝑋 has been carried out and the
value taken on by 𝑋 has been determined one can tell whether inequalities

𝑎 < 𝑋 < 𝑏

1Strictly speaking, variables have a mathematical definition in more advanced probability
theory.
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are fulfilled or not. (We might talk about an equality of the kind 𝑋 = 𝑎
instead, but we’d like to stress that often we are unable to measure the
variable with perfect accuracy because every measuring instrument has its
rounding error. Thus the intervals are more illustrative.) It turns out that
experiments differ in the following respect: if the inequalities 𝑎 < 𝑋 < 𝑏
were observed previously, they will be always true in the next experiments
when the conditions of the experiment are adhered. Such experiments are
called deterministic. Deterministic experiments led to a notion of a law of
nature. This predictability of results given the conditions allowed the usage
of mathematics to make such predictions. Many laws in classical physics,
chemistry, astronomy, such as the law of gravity, Kepler’s laws of planet
motion around the Sun, quantitative relations for chemical substances in
reactions have this form.

But there are another experiments as simple as rolling dice which don’t
have such deterministic nature. Let us consider the dice example. Let the
variable 𝑋 count the number on points on the upper face of a die rolled
once. It’s obvious that 𝑋 can be any number from the set of 1, 2, 3, 4,
5, and 6. But before rolling the die we can’t predict the number of points
thrown. Further, if the number of points shown is 1, then the next roll may
show any number of points from 1 to 6 anyway. This kind of experiments
is called nondeterministic, or just random. The variable 𝑋 in this case is
called random variable as well. (Older names are chance variable, stochastic
variable.) What kind of law can exist when ’everything is random’? When
we study mass-scale experiments new regularities appear. Let us assume
that the random experiment was executed 𝑁 times and the variable 𝑋 was
measured each time. Denote by 𝑁(𝑎, 𝑏) the number of times the inequalities
𝑎 < 𝑋 < 𝑏 were observed. The ratio

𝐹 *
𝑁 (𝑎, 𝑏) =

𝑁(𝑎, 𝑏)

𝑁

is called the relative frequency of hitting the interval (𝑎, 𝑏). Suppose, this
relative frequency varies a little from one series of repetitions to another.
Suppose moreover, the relative frequency oscillates in a narrow region as
the number 𝑁 of repetitions increases, i.e. 𝑁 → ∞. Then the relative
frequency is said to be statistically stable.

Example 1: Groom’s age distribution. The data in Table 1.1 was
borrowed from UN demographic statistics2. The numbers obviously vary

22009-2010 Demographic Yearbook. — NY: United Nations, 2011.
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from one year to another, although the total number of marriages is ap-
proximately the same. Moreover the change in the number of grooms within
an age interval can be caused both by the change in the total number of
grooms and other random sources. Next let us look at the corresponding

Table 1.1. Groom ages in Costa-Rica according to UN data
Year / Age 15–19 20–24 25–29 30–34 35–39 40–44

2009 655 4 786 6 587 4 330 2 374 1 507
2010 520 4 572 6 423 4 663 2 484 1 561

Year / Age 45–49 50–54 55–59 >60 Unknown Total
2009 1 086 693 470 733 698 23 919
2010 1 099 744 462 800 627 23 955

relative frequencies (Table 1.2). The numbers for different years are close.
Of course, this is an assumption which one better tests by special statistical
techniques. So far we may believe that the statistical stability assumption
holds for groom ages of Costa-Rica.

Table 1.2. Relative frequencies for the groom’s ages in Costa-Rica according to UN
data

Year / Age 15–19 20–24 25–29 30–34 35–39 40–44
2009 0.0274 0.2001 0.2754 0.1810 0.993 0.630
2010 0.0217 0.1909 0.2681 0.1947 0.1037 0.0652

Year / Age 45–49 50–54 55–59 >60 Unknown
2009 0.0454 0.0290 0.0196 0.0306 0.0292
2010 0.0459 0.0311 0.0193 0.0334 0.0262

���

Example 2: Quetelet’s Murders data.
A classical example of statistical stability belongs to L. Quetelet3. He

studied data from French criminal justice on murders. The data is shown
in Table 1.3. The variable 𝑋 under study is qualitative, i.e. it takes on
non-numerical values. The values are shown in the first column of the Ta-
ble. Quetelet wrote, “. . . In every thing which relates to crimes, the same
numbers are reproduced so constantly, that it becomes impossible to misap-
prehend it — even in respect to those crimes which seem perfectly beyond

3Lambert Adolphe Jacques Quetelet [French: k@tlE] (1796–1874) was a Belgian astronomer,
mathematician, statistician, and sociologist. He had introduced and popularized quantitative
statistical methods for social sciences.
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human foresight. . . nevertheless, experience proves that murders are com-
mitted annually not only pretty nearly to the same extent, but even that
the instruments employed are in the same proportion.” So, he stressed the
stability of relative frequencies (he called them proportions). He also indi-
cated a possible use of this stability: “We might even predict annually how
many individuals will stain their hands with the blood of their fellow-men,
how many will be forgers, how many will deal in poison, pretty nearly in
the same way as we may foretell the annual births and deaths.”

Table 1.3. The results of the reports of criminal justice in France for six years
(Source: L. Quetelet, Treatise on Man and the Development of his Faculties. —

Edinburgh, 1842)
Reason / Year 1826 1827 1828 1829 1830 1831
Guns and pistols 56 64 60 61 57 88
Sabre, sword, etc. 15 7 8 7 12 30
Knife 39 40 34 46 44 34
Cudgel, cane, etc. 23 28 31 24 12 21
Stones 20 20 21 21 11 9
Cutting, stabbing, and
bruising instruments

35 40 42 45 46 49

Strangulations 2 5 2 2 2 4
By precipitating and
drowning

6 16 6 1 4 3

Kicks and blows
with the fist

28 12 21 23 17 26

Fire – 1 – 1 – –
Unknown 17 1 2 – 2 2
Murders, in total 241 234 227 231 205 266

���

Let us introduce one more important term: an event. Besides inequal-
ities 𝑎 < 𝑋 < 𝑏 we might be interested in another statements like 𝑋 < 𝑎,
𝑋 > 𝑏, 𝑋 = 𝑎, 𝑋 ̸= 𝑏, |𝑋 − 𝑎| > 𝑏, etc. Moreover, if we have two
variables, 𝑋 and 𝑌 , we might be interested in the following statements:
𝑎 < 𝑋 + 𝑌 < 𝑏, 𝑋2 + 𝑌 2 > 𝑏, |𝑋| < 𝑌 , etc. The corresponding
sets of favorable values of the variables 𝑋, 𝑌 are the interval (−∞, 𝑎),
the semi-closed interval [𝑏,∞), a point {𝑎}, a line with a removed point
{𝑥 : − ∞ < 𝑥 < ∞, 𝑥 ̸= 𝑎} = (−∞, 𝑏) ∪ (𝑏,∞), a union of two open rays
(∞, 𝑎 − 𝑏) ∪ (𝑎 + 𝑏,∞) (Fig 1.4), a strip {(𝑥, 𝑦) : 𝑎 < 𝑥 + 𝑦 < 𝑏} (Fig 1.5,

10



a)), an outer region {(𝑥, 𝑦) : 𝑥2 + 𝑦2 > 𝑏} of a circle of radius
√
𝑏 centered

at the origin (Fig 1.5, b)), and an angle {(𝑥, 𝑦) : |𝑥| < 𝑦} (Fig. 1.5, c)).

𝑥
𝑎− 𝑏 𝑎 + 𝑏

Figure 1.4. A set of values 𝑥 such that |𝑥− 𝑎| > 𝑏

a)

𝑥

𝑦
b)

𝑥

𝑦

c)

𝑥

𝑦

Figure 1.5. Images of the sets: a) {(𝑥, 𝑦) : 𝑎 < 𝑥+ 𝑦 < 𝑏},
b) {(𝑥, 𝑦) : 𝑥2 + 𝑦2 > 𝑏}, c) {(𝑥, 𝑦) : |𝑥| < 𝑦}

The statements can also be formulated in natural languages (English,
Russian, etc.). Here 𝑋2 + 𝑌 2 > 𝑏 can be read as “the distance from the
origin to the point (𝑋,𝑌 ) is greater than

√
𝑏 ”, and so on.

We will call such statements events. We will also call the mathematical
sets of points depicting them events. We will use different notations for
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events as statements or inequalities on one hand, and as mathematical sets
on the other hand, interchangeably. Generally, we will denote events with
capital letters from the beginning of the Latin alphabet, i.e. 𝐴, 𝐵, etc.
Then, same as we did with the random variable 𝑋 and the interval (𝑎, 𝑏),
we may compute the relative frequency 𝐹 *

𝑁 (𝐺) of hitting a set 𝐺 by the
variables of interest. The statistical stability of the experiment means in
this case that frequencies 𝐹 *

𝑁 (𝐺) are close to each other for different series
of experiments and their scatterness decreases as 𝑁 grows.

So, if our previous experience demonstrates that the random experiment
is statistically stable we can use previously observed relative frequencies to
predict relative frequencies in the future. Moreover, we assume that for
given conditions of the random experiment every event has a number as-
signed to it which represents the possibility of occurrence of this event. Such
a number is called the probability of event. We will denote the probability of
event 𝐴 by P(𝐴). For instance, equality P(𝐴) = 𝑝 means that the numerical
value of the probability of event 𝐴 is 𝑝. The frequentists interpretation of
probability constitutes that 𝐹 *

𝑁 (𝐺) ≈ P(𝐴). In other words, a probability
is an ideal characteristic of events which can be measured in experiment by
means of relative frequency and the measurement typically is not exact.

We have to introduce two important events: Ω the certain event and ∅
the impossible event. The certain event is the event which is always true
because it occurs at each repetition of the experiments, while the impossible
is that which is always false because it is never observed. For example, if we
have a random variable 𝑋 that the certain event can be written as “𝑋 has
taken on one of its values”. Notice that if we observe two random variables,
𝑋, and 𝑌 then two statements: “𝑋 has taken on one of its values” and “𝑌
has taken on one of its values” are considered as one and the same certain
event. Similarly, the impossible event can be rephrased in many different
ways. Rephrasings may have even no relation to the random variables under
study, like the statement −1 > 2. Nevertheless, we consider all different
false statements as a single impossible event. Additional care should be
paid when using natural language for events. Surprisingly, “−1 > 2, hence
the Sun never shines at night” is a true statement. We should also avoid
using dubious descriptions of things, objects, numbers, etc., such that “the
largest number which can be described with eight words” (to describe this
number we used nine words).

The problem of logical foundations of probability theory was clearly
formulated by D. Hilbert4 in 1900. The first set of axioms was proposed

4David Hilbert (1862–1943) was a prominent German mathematician. He developed many
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by S.N. Bernstein5 in 1917. He interpreted events as statements following
the classical logics style. In his 1933 seminal book A.N. Kolmogorov6 con-
structed probability theory on the basis of sets theory and measure theory.
Later it was shown that the two approaches are in fact identical.

Mathematical operations on sets, such as the union, the intersection, the
difference have direct connection to logical operations on events as Table 1.4
shows. These operations satisfy well-known identities:

𝐴 ∪𝐴 = Ω, 𝐴 ∩𝐴 = ∅,

𝐴 ∩ Ω = 𝐴, 𝐴 ∪ Ω = Ω,

𝐴 ∩∅ = ∅, 𝐴 ∪∅ = 𝐴,

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪𝐵) ∪ 𝐶,

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩𝐵) ∩ 𝐶,

𝐴 ∩𝐵 = 𝐴 ∪𝐵, 𝐴 ∪𝐵 = 𝐴 ∩𝐵,

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩𝐵) ∪ (𝐴 ∩ 𝐶),

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪𝐵) ∩ (𝐴 ∪ 𝐶).

(1.1)

The most important properties of relative frequencies were selected as
the axioms (basic properties sine qua non) for probabilities:

1. Probability of any event is always between 0 and 1: 0 6 P(𝐴) 6 1.

2. The certain event Ω has probability 1: P(Ω) = 1.

3. The probability of the union of mutually exclusive events 𝐴1, 𝐴2, . . . ,
𝐴𝑛 equals the sum of their probabilities:

P(𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛) = P(𝐴1) + P(𝐴2) + . . . + P(𝐴𝑛). (1.2)

The third property can be read informally as “the probability of an event
is the total of the probabilities of all its favorable cases”. On the basis of
these properties some general laws of probability can be proven.

areas in real and complex analysis, foundations of geometry, functional analysis, and many
others.

5Sergĕı Natanovich Bernstein (1880–1968) was a Russian and Soviet mathematician, a Mem-
ber of USSR Academy of Sciences. He had solved the 19th Hilbert’s problem. His areas of
scientific contributions were differential equations, geometry, probability theory, and approxi-
mation theory.

6Andrĕı Nikolaevich Kolmogorov (1903–1987) was a Soviet mathematician and a Mem-
ber of USSR Academy of Sciences who made significant contributions to the mathematics of
probability theory, topology, intuitionistic logic, turbulence, classical mechanics, algorithmic
information theory, and computational complexity.
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Table 1.4. Logical operations on random events and their set theory counterparts
Notation Set theory Probability theory
𝐴 ∪𝐵 the union of two sets 𝐴,

𝐵 is a set containing ele-
ments which belong either
to 𝐴 or 𝐵

a union of two events 𝐴,
𝐵 occurs if either 𝐴 or 𝐵
occurs, or both

𝐴 ∩𝐵 the intersection of two sets
𝐴, 𝐵 is a set containing el-
ements which belong both
to 𝐴 and 𝐵

a union of two events 𝐴,
𝐵 occurs if both 𝐴 and 𝐵
occur

𝐴 the complement to the set
𝐴

the opposite event which
occurs if and only if 𝐴
didn’t occur

Ω the universe, the set in-
cluding all other sets as its
subsets

the certain event which
occurs in every conduction
of the experiment

∅ the empty set the impossible event
which never occurs

𝐴 ∖𝐵 set difference of 𝐴 and 𝐵
is a set containing only el-
ements belonging to 𝐴 and
not to 𝐵

the difference of events 𝐴
and 𝐵 occurs if and only
if 𝐴 occurred without 𝐵

𝐴 ⊂ 𝐵 𝐴 is a subset of 𝐵 𝐴 implies 𝐵, 𝐴 i a favor-
able case of 𝐵, i.e. 𝐵 oc-
curs whenever 𝐴 occurs

𝐴 ∩𝐵 = ∅ the sets 𝐴 and 𝐵 share no
common elements

events 𝐴 and 𝐵 are mutu-
ally exclusive, they can’t
occur together

14



Theorem 1. Probability satisfies the following:

∙ The probability of the impossible event is zero:

P(∅) = 0.

∙ The probability of the opposite event:

P(𝐴) = 1 −P(𝐴). (1.3)

∙ Monotonicity: if event 𝐴 implies event 𝐵 then

P(𝐴) 6 P(𝐵)

and
P(𝐵 ∖𝐴) = P(𝐵) −P(𝐴). (1.4)

∙ Summation formula for two events: if two events 𝐴 and 𝐵 are not
mutually exclusive then

P(𝐴 ∪𝐵) = P(𝐴) + P(𝐵) −P(𝐴 ∩𝐵). (1.5)

The summation formula can be proven as follows. The union 𝐴∪𝐵 has
three mutually exclusive cases: 𝐴 without 𝐵 (i.e. 𝐴 ∖𝐵), 𝐵 without 𝐴 (i.e.
𝐵 ∖𝐴), and both 𝐴 and 𝐵 (i.e. 𝐴 ∩𝐵). Then,

P(𝐴 ∪𝐵) = P(𝐴 ∖𝐵) + P(𝐵 ∖𝐴) + P(𝐴 ∩𝐵).

But the intersection 𝐴 ∩𝐵 implies both 𝐴 and 𝐵. Hence,

P(𝐴 ∖𝐵) = P(𝐴) −P(𝐴 ∩𝐵)

and
P(𝐵 ∖𝐴) = P(𝐵) −P(𝐴 ∩𝐵).

Substituting these two equalities info the formula for the union, we get the
summation formula:

P(𝐴 ∖𝐵) + P(𝐵 ∖𝐴) + P(𝐴 ∩𝐵)

= P(𝐴) −P(𝐴 ∩𝐵) + P(𝐵) −P(𝐴 ∩𝐵) + P(𝐴 ∩𝐵)

= P(𝐴) + P(𝐵) −P(𝐴 ∩𝐵).

Proofs of the remaining formulae is left to the reader.
Recall that the probability P(𝐴) of an event 𝐴 is completely defined by

the conditions of the experiment. Let 𝐵 be an event with positive proba-
bility, P(𝐵) > 0.
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Definition 1. The conditional probability of event 𝐴 given event 𝐵 with
P(𝐵) > 0 is defined as

P(𝐴 | 𝐵) =
P(𝐴 ∩𝐵)

P(𝐵)
. (1.6)

If P(𝐵) = 0 then the corresponding conditional probability is undefined.
To distinguish, the (unconditional) probability P(𝐴) is called the absolute
probability of the event 𝐴.

This definition is related to conditional experiments. Assume that the
original experiment has been carried out 𝑁 times. Let us throw away those
times when the event 𝐵 failed to occur. Denote by 𝑁𝐵 the number of
occurrences of event 𝐵. Then in the remaining results we may observe the
event 𝐴 together with 𝐵, i.e. we observe only a part of 𝐴, namely, 𝐴 ∩ 𝐵.
Denote by 𝑁𝐴∩𝐵 the number of occurrences of 𝐴 ∩ 𝐵. Then what is the
meaning of the relative frequency

𝑁𝐴∩𝐵

𝑁𝐵
?

It should be the conditional probability of 𝐴 given 𝐵 experimentally mea-
sured. Then,

𝑁𝐴∩𝐵

𝑁𝐵
=

𝑁𝐴∩𝐵/𝑁

𝑁𝐵/𝑁
≈ P(𝐴 ∩𝐵)

P(𝐵)
.

It justifies the formal definition of conditional probability.
It is left to the reader to prove that conditional probabilities in fact

satisfy the axioms on page 13.
From the definition of conditional probabilities we obtain the multipli-

cation theorem for probabilities:

Theorem 2. Let P(𝐴 ∩𝐵) > 0. Then

P(𝐴 ∩𝐵) = P(𝐴)P(𝐵 | 𝐴) = P(𝐵)P(𝐴 | 𝐵). (1.7)

Let P(𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛) > 0. Then

P(𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛) = P(𝐴1)P(𝐴2 | 𝐴1)P(𝐴3 | 𝐴1 ∩𝐴2)

× . . .×P(𝐴𝑛 | 𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛−1). (1.8)

Equality (1.7) follows directly from (1.6). To prove (1.8), recursively
apply (1.7).

There are special cases when the multiplication theorem involves only
absolute probabilities.
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Definition 2. Events 𝐴 and 𝐵 are called independent if

P(𝐴 ∩𝐵) = P(𝐴)P(𝐵). (1.9)

Events 𝐴1, 𝐴2, . . . , 𝐴𝑛 are called independent if

P(𝐴𝑖1 ∩𝐴𝑖2 ∩ . . . ∩𝐴𝑖𝑘) = P(𝐴𝑖1)P(𝐴𝑖2) × · · · ×P(𝐴𝑖𝑘) (1.10)

for all 𝑘 = 2, 3, . . . , 𝑛 and 1 6 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 6 𝑛. When events are
not independent they are called dependent.

Examples demonstrate that independence of two and 𝑛 > 3 events are
not equivalent. For instance, let 𝐸1, 𝐸2, 𝐸3, and 𝐸4 be mutually exclusive
events such that P(𝐸1) = P(𝐸2) = P(𝐸3) = P(𝐸4) = 0.25, set 𝐴 = 𝐸1∪𝐸2,
𝐵 = 𝐸1 ∪ 𝐸3, 𝐶 = 𝐸1 ∪ 𝐸3. Then 𝐴 and 𝐵 are independent, 𝐴 and 𝐶 are
independent, and 𝐵 and 𝐶 are independent, but 𝐴, 𝐵, and 𝐶 are dependent:

P(𝐴 ∩𝐵 ∩ 𝐶) = P(𝐸1) = 0.25 ̸= P(𝐴)P(𝐵)P(𝐶) = 0.5 · 0.5 · 0.5.

Suppose 𝐴 and 𝐵 are independent and P(𝐵) > 0. Then

P(𝐴 | 𝐵) =
P(𝐴 ∩𝐵)

P(𝐵)
by (1.6)

=
P(𝐴)P(𝐵)

P(𝐵)
by (1.9)

= P(𝐴).

So, in probability theory independence means that occurrence of one event
doesn’t change the probability of the other event. Observation of event 𝐵
doesn’t improve our prediction of chances to observe the other event in the
same execution of the experiment. We’d like to stress that the independence
in probability theory is a property of probabilities. It is often called a sta-
tistical independence. Sometimes it is implied by independence in common
sense. People usually understand independence as the absence of causal re-
lationships between two phenomena. Statistical independence is more than
that.

If 𝐴 and 𝐵 are independent, so are 𝐴 and 𝐵, 𝐴 and 𝐵, 𝐴 and 𝐵. Indeed,

P(𝐴 ∩𝐵) = P(𝐴 ∖𝐵)

= P(𝐴 ∖ (𝐴 ∩𝐵))
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= P(𝐴) −P(𝐴 ∩𝐵) by (1.4)
= P(𝐴) −P(𝐴)P(𝐵) by (1.9)
= P(𝐴)(1 −P(𝐵))

= P(𝐴)P(𝐵) by (1.3)

If events 𝐴1, 𝐴2, . . . , 𝐴𝑛 are independent, so are events 𝐴′
1, 𝐴′

2, . . . , 𝐴′
𝑛

where each 𝐴′
𝑖 is either 𝐴𝑖 or 𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑛.

When events 𝐴1, 𝐴2, . . . , 𝐴𝑛 are independent, the multiplication for-
mula (1.8) takes the following shorter form:

P(𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛) = P(𝐴1)P(𝐴2) × . . .×P(𝐴𝑛). (1.8′)

Example 3: Probability of at least one of a number of events.
Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be independent events, their probabilities be 𝑝1, 𝑝2,
. . . , 𝑝𝑛 correspondingly. Then at least one of them occurs with probability

1 − (1 − 𝑝1)(1 − 𝑝2) × . . .× (1 − 𝑝𝑛).

Indeed, the event “at least one of them occurs” can be written as the union
𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛, so

P(𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛) = P
(︀
𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛

)︀
by (1.1)

= 1 −P(𝐴1 ∩𝐴2 ∩ . . . ∩𝐴𝑛) by (1.3)

= 1 −P(𝐴1)P(𝐴2) × . . .×P(𝐴𝑛) by (1.8′)
= 1 − (1 − 𝑝1)(1 − 𝑝2) × . . .× (1 − 𝑝𝑛) by (1.3)

���

Combination of the summation axiom 3 and the multiplication theorem
gives the Law of total probability.

Theorem 3. Let events 𝐻1, 𝐻2, . . . , 𝐻𝑛 be mutually exclusive, P(𝐻𝑖) > 0
for 𝑖 = 1, 2, . . . , 𝑛, and let 𝐴 ⊂ 𝐻1 ∪𝐻2 ∪ . . .∪𝐻𝑛, i.e. event 𝐴 may occur
only together with one on the auxiliary events 𝐻1, 𝐻2, . . . , 𝐻𝑛. Then,

P(𝐴) = P(𝐻1)P(𝐴 | 𝐻1) + P(𝐻2)P(𝐴 | 𝐻2) + . . . + P(𝐻𝑛)P(𝐴 | 𝐻𝑛).
(1.11)
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Lecture

2
Random variables and their
probability distributions

We will not go into details of a purely mathematical definition of a
random variable. We assume that the notion of a random variable is one of
primary notions in probability theory. It is important to keep in mind that
a random variable is described by its set of possible values and probabilities
of events generated by it as described in Lecture 1. Let 𝑋 be a random
variable.

Definition 3. 𝑋 is a discrete random variable if there are numbers 𝑥1, 𝑥2,
. . . , 𝑥𝑛, . . . among its possible values that have strictly positive probabilities
summing up to unity:

P(𝑋 = 𝑥𝑖) = 𝑝𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛, . . . ;

𝑝1 + 𝑝2 + . . . + 𝑝𝑛 + . . . = 1.

When the possible values are in finite number one may put them in the
following table assuming 𝑥1 < 𝑥2 < . . . < 𝑥𝑛:

𝑎 𝑥1 𝑥2 . . . 𝑥𝑛

P(𝑋 = 𝑎) 𝑝1 𝑝2 . . . 𝑝𝑛

Another visual representation of a discrete probability distribution is the
polygon of probabilities (Fig. 2.1). A polygon of probabilities consists of
line segments whose end-points are (𝑥1, 𝑝1), (𝑥2, 𝑝2), . . . , (𝑥𝑛, 𝑝𝑛), . . . .

Example 4: Discrete uniform probability distribution. Random
variable 𝑋 has a discrete uniform distribution if its values 𝑥1, 𝑥2, . . . , 𝑥𝑛

have equal probabilities of 1/𝑛. An example of such random variable is the
number of points thrown in one roll of a fair die (a symmetric die). One
year has 365 days (assuming a common year). We may assume that people
are equally likely to be born on any day of year1. Hence the day number 𝑋
has a uniform probability distribution on integers 1 through 365:

P(𝑋 = 𝑘) =
1

365
, 𝑘 = 1, 2, . . . , 365.

1Some authors argue that September is more frequent than the other months in the USA,
see http://www.panix.com/~murphy/bday.html
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Figure 2.1. A polygon of probabilities. Only the first five points are depicted

Then the probability to born in January is by (1.2)

P(1 6 𝑋 6 31) = P(𝑋 = 1) + P(𝑋 = 2) + . . . + P(𝑋 = 31) =
31

365
.

It is timely to discuss the rare events comprehension. In short, we can’t
neglect events of small probability. Consider a well-shuffled deck of 52 cards.
If we pick 13 cards at random they can be any cards. In other words, no
combination of 13 cards is more likely to appear than the others. Let us
enumerate all possible combinations (they are(︂

52

13

)︂
=

52!

13!(52 − 13)!
= 635 013 559 600,

i.e. more than 635 billion) and let the random variable 𝑋 indicate the
number of the combination at hand. Then 𝑋 has the uniform probability
distribution on the set of integers 1, 2, . . . , 635 013 559 600. Thus every
combination 𝑎 of thirteen cards has probability as small as

P(𝑋 = 𝑎) =
1

635 013 559 600
≈ 1.6 × 10−12.

So, every single value of this random variable is extremely rare. But we
can’t get rid of these values because there are no other “more likely” values,
and what is more important, such rare events are favorable cases for more
likely events. For instance, there are(︂

48

13

)︂
= 192 928 249 296
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combinations of thirteen cards without Aces, so the probability to have no
Aces in the hand is

P({𝑎 : the combination 𝑎 has no Aces}) =
192 928 249 296

635 013 559 600
= 0.3038175270108043 . . .

and is expected in around 30 % of experiments. ���

Example 5: Binomial probability distribution. Random variable
𝑋 with possible values 0, 1, . . . , 𝑛 and corresponding probabilities

P(𝑋 = 𝑘) =

(︂
𝑛

𝑙

)︂
𝑝𝑘(1 − 𝑝)𝑛−𝑘

=
𝑛!

𝑘!(𝑛− 𝑘)!
𝑝𝑘(1 − 𝑝)𝑛−𝑘, 𝑘 = 0, 1, . . . , 𝑛 (2.1)

has a binomial probability distribution. Binomial probability distribution
describes for instance the number of occurrences of an event 𝐴 with proba-
bility 𝑝 in 𝑛 repeated independent experiments.

Assume a symmetric coin is tossed 𝑛 times. Select a face, its appear-
ance will be called a success. The symmetry implies the probability of a
success in one toss 𝑝 = 0.5. A coin is a solid body, neither its form or
its mass distribution changes from a toss to another, hence the tosses are
independent, they are executed in the same controlled conditions. Then the
number of occurrences of the selected face follows the binomial probability
distribution. Substituting 𝑛 and 𝑝 = 0.5 into formula (2.1) we get:

P(𝑋 = 2) =

(︂
4

2

)︂
× (0.5)4 = 0.375 if 𝑛 = 4,

P(𝑋 = 5) =

(︂
10

5

)︂
× (0.5)10 = 0.24609375 if 𝑛 = 10,

P(𝑋 = 25) =

(︂
50

25

)︂
× (0.5)50 = 0.11227517 . . . if 𝑛 = 50,

P(𝑋 = 50) =

(︂
100

50

)︂
× (0.5)100 = 0.07958923 . . . if 𝑛 = 100,

P(𝑋 = 500) =

(︂
1000

500

)︂
× (0.5)1000 = 0.025225018 . . . if 𝑛 = 1000.

We see that the probability of even divide between Heads and Tails becomes
less and less probable as the number of tosses grows. ���
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Example 6: Geometric probability distribution.. Random vari-
able 𝑋 with possible values 1, 2, . . . and probabilities

P(𝑋 = 𝑘) = 𝑝(1 − 𝑝)𝑘−1, 𝑘 = 1, 2, . . .

has the geometric probability distribution with parameter 𝑝, 0 < 𝑝 6 1 (if
𝑝 = 1 then P(𝑋 = 1) = 𝑝 by definition). Such random variables arise as the
count of independent repeated trials until the first occurrence of a selected
event 𝐴, 𝑝 being the probability of 𝐴 in one trial. E.g., consider customers
arrivals in discrete time-scale. If one customer arrives during a time slot
with probability 𝑝 and no customers arrive with probability 1 − 𝑝, then 𝑋
is the interarrival interval.

The following computation demonstrates the lack of memory property
of the geometric probability distribution. Let 𝑘 and 𝑙 be positive integers,
then one has by (1.2)

P(𝑋 > 𝑘) = P(𝑋 = 𝑘 + 1) + P(𝑋 = 𝑘 + 2) + P(𝑋 = 𝑘 + 3) + . . .

= 𝑝(1 − 𝑝)𝑘 + 𝑝(1 − 𝑝)𝑘+1 + 𝑝(1 − 𝑝)𝑘+2 + . . .

=
𝑝(1 − 𝑝)𝑘

1 − (1 − 𝑝)
= (1 − 𝑝)𝑘 (2.2)

by the sum formula for a geometric progression; similarly,

P(𝑋 > 𝑘 + 𝑙) = (1 − 𝑝)𝑘+𝑙.

Now,

P(𝑋 > 𝑘 + 𝑙|𝑋 > 𝑘) =
P({𝑋 > 𝑘 + 𝑙} ∩ {𝑋 < 𝑘})

P(𝑋 > 𝑘)
by (1.6)

=
P({𝑘 + 𝑙 + 1, 𝑘 + 𝑙 + 2, . . .} ∩ {𝑘 + 1, 𝑘 + 2, . . .})

P({𝑘, 𝑘 + 1, . . .})

=
P({𝑘 + 𝑙 + 1, 𝑘 + 𝑙 + 2, . . .} ∩ {𝑘 + 1, 𝑘 + 2, . . .})

P({𝑘, 𝑘 + 1, . . .})

=
P({𝑘 + 𝑙 + 1, 𝑘 + 𝑙 + 2, . . .})

P({𝑘, 𝑘 + 1, . . .})

=
(1 − 𝑝)𝑘+𝑙

(1 − 𝑝)𝑘
by (2.2)

= (1 − 𝑝)𝑙 = P(𝑋 > 𝑙).
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The conditional probability above refers to the remaining waiting time be-
ing at least 𝑙 + 1 given no successes occurred during the first 𝑘 trials. By
the way, equality (2.2) can be discovered as follows. Since the event 𝑋 > 𝑘
means that the first 𝑘 trials result in a failure and the trials are indepen-
dent (2.2) follows from the multiplication formula (1.8′) for probabilities
of independent events, 1 − 𝑝 being the probability of a failure in one trial.
���

Example 7: Poisson probability distribution. A random variable
𝑋 is said to have the Poisson2 probability distribution with parameter 𝜆,
𝜆 > 0 if it takes on values 𝑘 = 0, 1, 2, . . . with probabilities

P(𝑋 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆.

This probability distribution is widely used in insurance mathematics as
well as in quality control. It well describes the number of rare events in a
large number of independent trials. The Poisson probability distribution is
a good approximation for the binomial probability distribution. Indeed, let
𝑛 grow to infinity and 𝑝 tend to 0 so that 𝑛𝑝 → 𝜆. Put

𝑅(𝑘;𝑛, 𝑝) =

(︀
𝑛
𝑘

)︀
𝑝𝑘(1 − 𝑝)𝑛−𝑘(︀

𝑛
𝑘−1

)︀
𝑝𝑘−1(1 − 𝑝)𝑛−(𝑘−1)

=
1 − 𝑝

𝑝
× 𝑛− 𝑘 + 1

𝑘
,

then (︂
𝑛

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑛− 𝑘 = (1 − 𝑝)𝑛𝑅(1;𝑛, 𝑝)𝑅(2;𝑛, 𝑝) · · ·𝑅(𝑘;𝑛, 𝑝),

𝑅(𝑘;𝑛, 𝑝) → 𝜆

𝑘
as 𝑛 → ∞, 𝑝 → 0, and 𝑛𝑝 → 𝜆,

(1 − 𝑝)𝑛 → 𝑒−𝜆,

and (︂
𝑛

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑛−𝑘 → 𝜆𝑘

𝑘!
𝑒−𝜆.

The latter limit has the name of Poisson’s limit theorem.
2Simeón Denis Poisson [French: pwa.sÕ] (1781–1840) was a French mathematician and

physicist. His works cover areas of pure mathematics, mathematical physics, theoretical and
celestial mechanics.
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Consider the following case study: a refrigerator production lines pro-
duces on the average defective refrigerators per ten thousand. What is the
probability a party of 500 refrigerators contains at least one defective re-
frigerator? From the data we may estimate the probability to produce a
defective refrigerator as 3/10 000 = 0.0003. The number of trials is 𝑛 = 500,
a defective refrigerator will be counted as a ’success’, then the number 𝑋 of
defective refrigerators in the party has the Poisson probability distribution
with parameter 𝜆 = 500 × 0.0003 = 0.15. So,

P(𝑋 > 1) =

∞∑︁
𝑘=1

0.15𝑘

𝑘!
𝑒−0.15.

This series is not easy to evaluate directly. But, turning to the opposite
event one obtains

P(𝑋 > 1) = 1 −P(𝑋 = 0) = 1 − 𝑒−0.15 = 0.1392920235749422 . . .

In other words, on the average only 86.1 % of such parties are completely
high-quality. It looks like a paradox, since the probability to buy a defective
refrigerator is still 0.0003, i.e. is ’negligibly small’. ���

The second important type of random variables is that of continuous
random variables.

Definition 4. A random variable 𝑋 with an uncountable infinite set of
possible values is called a continuous random variable if for any 𝑢, 𝑣 (𝑢 < 𝑣)
the probability P(𝑢 < 𝑋 < 𝑣) can be evaluated as

P(𝑢 < 𝑋 < 𝑣) =

𝑣∫︁
𝑢

𝑝(𝑥) 𝑑𝑥, (2.3)

where 𝑝(𝑢) is a non-negative function such that

∞∫︁
−∞

𝑝(𝑢) 𝑑𝑢 = 1. (2.4)

The function 𝑝(𝑢) is called a probability density. It can be determined
by taking limit

𝑝(𝑢) = lim
𝛿→0,𝛿>0
𝜂→0,𝜂>0

P(𝑢− 𝛿 < 𝑋 < 𝑢 + 𝜂)

𝜂 + 𝛿
. (2.5)
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Its interpretation is as follows:

P(𝑢− 𝛿 < 𝑋 < 𝑢 + 𝜂) = 𝑝(𝑢)(𝛿 + 𝜂) + . . .

where the ellipsis stands for the small terms of higher order then the total
length 𝜂 + 𝛿, i.e. the probability for the random variable 𝑋 to take a value
between the limits 𝑢−𝛿 and 𝑢+𝜂 is approximately the area of the rectangle
with sides 𝑝(𝑢) and (𝛿 + 𝜂) (see Fig. 2.2).

𝑢

𝑔(𝑢)

−2 −1 0 1 2 3𝑢1 𝑢2 𝑢3

0.5

𝑔(1)

Figure 2.2. Probability density and geometric visualization of additivity property
of probabilities. The blue curve depicts the probability density. The rectangle’s
area is approximately equal to the area below the curve within the same limits

Further, the general properties of definite integrals guarantee that for
𝑢1 < 𝑢2 < 𝑢3

P(𝑢1 < 𝑋 < 𝑢3) = P(𝑢1 < 𝑋 < 𝑢2) + P(𝑢2 < 𝑋 < 𝑢3)

where

P(𝑢1 < 𝑋 < 𝑢3) =

𝑢3∫︁
𝑢1

𝑝(𝑢) 𝑑𝑢,

P(𝑢1 < 𝑋 < 𝑢2) =

𝑢2∫︁
𝑢1

𝑝(𝑢) 𝑑𝑢,

P(𝑢2 < 𝑋 < 𝑢3) =

𝑢3∫︁
𝑢2

𝑝(𝑢) 𝑑𝑢.

Let us calculate the probability of any single value of a continuous ran-
dom variable. Call this value 𝑢. Then the event 𝑋 = 𝑢 implies events
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𝑢 − 𝛿 < 𝑋 < 𝑢 + 𝜂 for all strictly positive 𝛿 and 𝜂. Hence, by the mono-
tonicity of probability (see Lecture 1),

0 6 P(𝑋 = 𝑢) 6 P(𝑢− 𝛿 < 𝑋 < 𝑢 + 𝜂) =

𝑢+𝜂∫︁
𝑢−𝛿

𝑝(𝑢) 𝑑𝑢.

But the definite integral in the right-hand side can be made arbitrary small
by choosing small values of 𝛿 and 𝜂. We must conclude that P(𝑋 = 𝑢) = 0.
Again, we have an abundance of events of zero probability none of which can
be got rid of. Another implication of the conclusion is that strict inequalities
and weak inequalities have same probabilities, e.g.

P(𝑋 6 𝑢) = P(𝑋 < 𝑢) + P(𝑋 = 𝑢) = P(𝑋 < 𝑢),

P(𝑢 6 𝑋 6 𝑣) = P(𝑢 < 𝑋 6 𝑣) = P(𝑢 6 𝑋 < 𝑣) = P(𝑢 < 𝑋 < 𝑣).

Example 8: Continuous uniform probability distribution. Let
the density 𝑝(𝑢) take on a positive value inside an interval (𝑎, 𝑏) and vanish
outside of it, i.e.

𝑝(𝑢) =

{︃
𝐶 if 𝑎 6 𝑢 6 𝑏

0 if 𝑢 < 𝑎 or 𝑢 > 𝑏.

To determine the constant 𝐶 we may use the normalization condition (2.4):

1 =

∞∫︁
−∞

𝑝(𝑢) 𝑑𝑢

=

𝑎∫︁
−∞

𝑝(𝑢) 𝑑𝑢 +

𝑏∫︁
𝑎

𝑝(𝑢) 𝑑𝑢 +

∞∫︁
𝑏

𝑝(𝑢) 𝑑𝑢

= 0 +

𝑏∫︁
𝑎

𝑝(𝑢) 𝑑𝑢 + 0 = 𝐶 · (𝑏− 𝑎),

whence 𝐶 = 1/(𝑏 − 𝑎). This probability distribution as analogous to its
discrete counterpart. It realizes the idea of equal probabilities of cases.
Although each single value has zero probability, every segment of length ∆
inside the interval (𝑎, 𝑏) has the same probability:

P(𝑢 < 𝑋 < 𝑢 + ∆) =

𝑢+Δ∫︁
𝑢

𝑑𝑢

𝑏− 𝑎
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=
𝑢

𝑏− 𝑎

⃒⃒⃒𝑢+Δ

𝑢
=

∆

𝑏− 𝑎
(2.6)

In other words, the probability of hitting an interval or a segment is pro-
portional only to the length of that interval or segment. ���

Example 9: Exponential probability distribution. The exponen-
tial probability distribution with parameter 𝜆, 𝜆 > 0 is defined by the
probability density

𝑝(𝑢) =

{︃
0 if 𝑢 < 0,
𝜆𝑒−𝜆𝑢 if 𝑢 > 0.

���

Example 10: Pareto probability distribution. The Pareto proba-
bility distribution is defined by the density

𝑝(𝑢) =

⎧⎨⎩0 if 𝑢 < 0,
𝛼𝜃𝛼

(𝑢 + 𝜃)𝛼+1
if 𝑢 > 0.

The parameters are 𝛼 > 0 and 𝜃 > 0. This probability distribution is often
used to model the distribution of wealth in a population. It is instruc-
tive to compare a Pareto probability density to an exponential probability
density (see Fig. 2.3). Although both types of probability densities are
monotonously decreasing for 𝑢 > 0, exponential probability densities de-
cay more rapidly. Informally, mathematicians say that Pareto densities are
’heavy-tailed’.

𝑢

𝑝(𝑢)

Figure 2.3. A Pareto probability density (the red curve) and exponential
probability density (the blue curve)

���
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Example 11: Normal (Gaussian) probability distribution. The
normal probability distribution (also known as the Gaussian probability
distribution) has the probability density

𝑝(𝑢) =
1

𝜎
√

2𝜋
𝑒−

(𝑢−𝑎)2

2𝜎2 , (2.7)

where 𝜎 > 0 and a real 𝑎 are the parameters. This probability distribution
will be more discussed in Lecture 5. ���

Definition 5. The mathematical expectation of a discrete random variable
𝑋 is defined as

M𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 + . . . + 𝑥𝑛𝑝𝑛

when the total number of possible value is finite, and the infinite series

M𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 + . . . + 𝑥𝑛𝑝𝑛 + . . .

when the total number of possible values in infinite and the series is abso-
lutely convergent, which means the series

|𝑥1| 𝑝1 + |𝑥2| 𝑝2 + . . . + |𝑥𝑛| 𝑝𝑛 + . . . < ∞.

If 𝑦 = 𝑔(𝑥) is a function, then

M𝑔(𝑋) = 𝑔(𝑥1)𝑝1 + 𝑔(𝑥2)𝑝2 + . . . + 𝑔(𝑥𝑛)𝑝𝑛

in case of a finite set of possible values, otherwise

M𝑔(𝑋) = 𝑔(𝑥1)𝑝1 + 𝑔(𝑥2)𝑝2 + . . . + 𝑔(𝑥𝑛)𝑝𝑛 + . . .

assuming the series in the right-hand side is absolutely convergent. Let
M𝑋 = 𝑎. Then

var𝑋 = M(𝑋 − 𝑎)2 = (𝑥1 − 𝑎)2𝑝1 + (𝑥2 − 𝑎)2𝑝2 + . . .

is called the variance of 𝑋.

The idea to introduce the mathematical expectation comes from the
following reasoning. Let numbers 𝑥1, 𝑥2, . . . , 𝑥𝑛 be the possible values of a
discrete random variable 𝑋, 𝑝𝑘 = P(𝑋 = 𝑥𝑘) for 𝑘 = 1, 2, . . . , 𝑛. Denote
by 𝑁𝑘 the number of occurrences of 𝑥𝑘 in 𝑁 independent trials. Then the
sample average value of 𝑋 is

𝑥1 ·
𝑁1

𝑁
+ 𝑥2 ·

𝑁2

𝑁
+ . . . + 𝑥𝑛 · 𝑁𝑛

𝑁
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On the other hand, the statistical stability leads to

𝑁𝑘

𝑁
≈ 𝑝𝑘.

So, sample average value should be close to

M𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 + . . . + 𝑥𝑛𝑝𝑛.

Definition 6. The mathematical expectation of a continuous random vari-
able 𝑋 with probability density 𝑝(𝑢) is defined as

M𝑋 =

∞∫︁
−∞

𝑢 𝑝(𝑢) 𝑑𝑢

the integral is absolutely convergent, which means
∞∫︁

−∞

|𝑢| 𝑝(𝑢) 𝑑𝑢 < ∞.

If 𝑦 = 𝑔(𝑥) is a function, then

M𝑔(𝑋) =

∞∫︁
−∞

𝑔(𝑢)𝑝(𝑢) 𝑑𝑢

assuming the integral in the right-hand side is absolutely convergent. Let
M𝑋 = 𝑎. Then the variance of 𝑋 is defined as

var𝑋 = M(𝑋 − 𝑎)2 =

∞∫︁
−∞

(𝑢− 𝑎)2𝑝(𝑢) 𝑑𝑢.

Mathematical expectations of discrete and continuous random variables
have different definitions. But then one defines the variance by same for-
mula regardless of the nature of the random variable. This is a general
situation when more advanced quantities are defined in terms of mathemat-
ical expectation.

Definition 7. The standard deviation of a random variable 𝑋 is defined as

𝜎(𝑋) =
√
var𝑋.
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Just as the mathematical expectation locates the random variable and
characterizes its mean value, the variance demonstrates typical deviation
of the value taken on by the random variable from its mean value. Both
mathematical expectation and variance play important role in theory and
applications.

Example 12: Measuring the risk of an asset. Different assets
such as shares, security papers, options, and futures are sold and bought
at financial markets and stock exchanges worldwide. Their prices change
randomly every moment. Let 𝑆𝑡 be the closing price of a selected asset at
day 𝑡 = 1, 2, . . . . The return (or the interest rate) at day 𝑡 is defined as

𝑅𝑡 =
𝑆𝑡 − 𝑆𝑡−1

𝑆𝑡−1
× 100 %.

People are often interested in expected return M𝑅𝑡 of the asset. Its risk
is defined as 𝜎(𝑅𝑡), its stand-art deviation. These data are published in
financial sections of newspapers and TV news channels etc. Let the return
have the following discrete probability distribution:

𝑥 9 % 12 % 15 %
P(𝑅𝑡 = 𝑥) 1

3
1
3

1
3

Then

M𝑅𝑡 =
(︁

0.09 × 1

3
+ 0.12 × 1

3
+ 0.15 × 1

3

)︁
× 100 % = 12 %,

var𝑅𝑡 = (0.09 − 0.12)2 × 1

3
+ (0.12 − 0.12)2 × 1

3
+ (0.15 − 0.12)2 × 1

3
= 0.0006,

𝜎(𝑅𝑡) =
√

0.0006 × 100 % = 2.45 %.

���

In computation of mathematical expectations and variances more for-
mulae are helpful.

Theorem 4. Let 𝑋 and 𝑌 be random variables with finite M𝑋 and M𝑌 ,
let 𝑎 and 𝑏 be constants, then

M𝑎 = 𝑎, var (𝑎) = 0, (2.8)
M(𝑎𝑋 + 𝑏𝑌 ) = 𝑎M𝑋 + 𝑏M𝑌, (2.9)

var𝑋 = M(𝑋2) − (M𝑋)2, (2.10)

var𝑋 = M𝑋(𝑋 − 1) + M𝑋 − (M𝑋)2, (2.11)
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var (𝑎𝑋 + 𝑏) = 𝑎2var𝑋, (2.12)

var (𝑋 + 𝑌 ) = var𝑋 + var𝑌 + 2M
(︀
(𝑋 −M𝑋)(𝑌 −M𝑌 )

)︀
. (2.13)

Recall our discussion of independence in the previous lecture. Now we
may ask a question: when probabilities

P(𝑢1 < 𝑋 < 𝑢2) and P(𝑣1 < 𝑌 < 𝑣2)

are sufficient for calculation of the probability

P({𝑢1 < 𝑋 < 𝑢2} ∩ {𝑣1 < 𝑌 < 𝑣2}) = P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2) ?

In other words, when are events 𝑢1 < 𝑋 < 𝑢2 and 𝑣1 < 𝑌 < 𝑣2 are
independent? Independence may take place only for specific values 𝑢1, 𝑢2,
𝑣1, and 𝑣2, or it may hold for all 𝑢1 < 𝑢2 and 𝑣1 < 𝑣2. Geometrically,
inequalities

𝑢1 < 𝑋 < 𝑢2 𝑣1 < 𝑌 < 𝑣2

describe a rectangle with sides parallel to the coordinate axes. If one can
easily compute probability for rectangles, one can compute probabilities
for many other plain figures which can be approximated by rectangles (see
Fig. 2.4).

𝑥

𝑦

𝑢1 𝑢2

𝑣1

𝑣2

𝑥

𝑦

𝑢1 𝑢2

𝑣1

𝑣2

Figure 2.4. Geometrical interpretation of inequalities 𝑢1 < 𝑋 < 𝑢2 and
𝑣1 < 𝑌 < 𝑣2, and covering plain figures with rectangles

Definition 8. Random variables 𝑋, 𝑌 , . . . , 𝑍 are called independent when
for all 𝑢1 < 𝑢2, 𝑣1 < 𝑣2, . . . , 𝑤1 < 𝑤2 one has

P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2, . . . , 𝑤1 < 𝑍 < 𝑤2)

= P(𝑢1 < 𝑋 < 𝑢2)P(𝑣1 < 𝑌 < 𝑣2) × . . .×P(𝑤1 < 𝑍 < 𝑤2).
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Let 𝑋 and 𝑌 be independent continuous random variables with proba-
bility densities 𝑝1(𝑢) and 𝑝2(𝑢). Then

P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2) = P(𝑢1 < 𝑋 < 𝑢2)P(𝑣1 < 𝑌 < 𝑣2)

=
(︁ 𝑢2∫︁
𝑢1

𝑝1(𝑢) 𝑑𝑢
)︁(︁ 𝑣2∫︁

𝑣1

𝑝2(𝑣) 𝑑𝑣
)︁ ∫︁∫︁
𝑢1<𝑢<𝑢2
𝑣1<𝑣<𝑣2

𝑝1(𝑢)𝑝2(𝑣) 𝑑𝑢𝑑𝑣.

Therefore, the probability to hit the rectangle with a random point (𝑋,𝑌 )
can be calculated by taking the double integral over the rectangle of the
function

𝑝(𝑢, 𝑣) = 𝑝1(𝑢)𝑝2(𝑣)

of two real variables. In multivariate calculus it is proven that for large class
of plain figures 𝐷 the probability of hitting a figure 𝐷 equals the double
integral ∫︁∫︁

(𝑢,𝑣)∈𝐷

𝑝(𝑢, 𝑣) 𝑑𝑢𝑑𝑣.

Definition 9. Random variables 𝑋, 𝑌 , . . . , 𝑍 with uncountable infinite
sets of possible values have a continuous joint probability distribution if for
any solid figure 𝐷 the probability

P((𝑋,𝑌, . . . , 𝑍) ∈ 𝐷) =

∫︁
· · ·

∫︁
𝐷

𝑝(𝑢, 𝑣, . . . , 𝑤) 𝑑𝑢 𝑑𝑣 · · · 𝑑𝑤 (2.14)

where 𝑝(𝑢, 𝑣, . . . , 𝑤) is a non-negative function such that∫︁
· · ·

∫︁
−∞<𝑢<∞
−∞<𝑣<∞

...
−∞<𝑤<∞

𝑝(𝑢, 𝑣, . . . , 𝑤) 𝑑𝑢 𝑑𝑣 · · · 𝑑𝑤 = 1.

The function 𝑝(𝑢, 𝑣, . . . , 𝑤) is called a multivariate probability density (or a
joint probability density).

Random variables 𝑋, 𝑌 , . . . , 𝑍 with joint continuous probability distri-
bution are independent if and only if

𝑝(𝑢, 𝑣, . . . , 𝑤) = 𝑝1(𝑢)𝑝2(𝑣) × · · · × 𝑝𝑛(𝑤)
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where 𝑝1(𝑢) is the probability density of 𝑋, 𝑝2(𝑣) is the probability density
of 𝑌 , 𝑝𝑛(𝑤) is the probability density of 𝑍.

Equivalently, discrete random variables 𝑋, 𝑌 , . . . , 𝑍 are independent if
and only if

P(𝑋 = 𝑢, 𝑌 = 𝑣, . . . , 𝑍 = 𝑤) = P(𝑋 = 𝑢)P(𝑌 = 𝑣) × . . .×P(𝑍 = 𝑤)

for all possible values 𝑢, 𝑣, . . . , 𝑤 of the random variables.
One shouldn’t think that random variables are usually independent.

Example 13: Random sampling without replacement. From a
set or 𝑛 items 𝑘 items are selected randomly3. Assuming the items were
labelled 1 to 𝑛 and the selected items were ordered by their labels, denote
by 𝑋1, 𝑋2, . . . , 𝑋𝑘 the labels from the smallest to the largest. Obviously,
𝑋1 < 𝑋2 < . . . < 𝑋𝑘. Besides that, all probabilities

P(𝑋1 = 𝑢1, 𝑋2 = 𝑢2, . . . , 𝑋𝑘 = 𝑢𝑘), 1 6 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 6 𝑛

should be equal. Since there are
(︀
𝑛
𝑘

)︀
different sequences (𝑢1, 𝑢2, . . . , 𝑢𝑘),

1 6 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 6 𝑛 and the sum of all such probabilities equals
unity as the probability of the certain event, we get

P(𝑋1 = 𝑢1, 𝑋2 = 𝑢2, . . . , 𝑋𝑘 = 𝑢𝑘)

=

⎧⎨⎩
1(︀
𝑛
𝑘

)︀ if 1 6 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 6 𝑛

0 otherwise.

In particular,

P(𝑋1 = 𝑛− 𝑘 + 1, 𝑋2 = 𝑛− 𝑘 + 2, . . . , 𝑋𝑘 = 𝑛) =
𝑘!(𝑛− 𝑘)!

𝑛!
> 0.

The event 𝑋1 = 𝑛−𝑘+1, 𝑋2 = 𝑛−𝑘+2, . . . , 𝑋𝑘 = 𝑛 implies 𝑋1 = 𝑛−𝑘+1
and

P(𝑋1 = 𝑛− 𝑘 + 1) > P(𝑋1 = 𝑛− 𝑘 + 1, 𝑋2 = 𝑛− 𝑘 + 2, . . . , 𝑋𝑘 = 𝑛) > 0.

Then

P(𝑋1 = 𝑛− 𝑘,𝑋2 = 𝑛− 𝑘 + 1, . . . , 𝑋𝑘 = 𝑛− 1) =
𝑘!(𝑛− 𝑘)!

𝑛!
> 0.

3To choose an item at random one can use a roulette with sufficiently many pockets. If a
pocket appears more than once, it’s skipped for another turn of the roulette.
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The event 𝑋1 = 𝑛− 𝑘,𝑋2 = 𝑛− 𝑘, . . . ,𝑋𝑘 = 𝑛− 1 implies 𝑋2 = 𝑛− 𝑘 + 1
and

P(𝑋2 = 𝑛− 𝑘 + 1) > P(𝑋1 = 𝑛− 𝑘,𝑋2 = 𝑛− 𝑘 + 1, . . . , 𝑋𝑘 = 𝑛− 1) > 0.

This way we notice that all P(𝑋𝑖 = 𝑛− 𝑘 + 1) > 0, 𝑖 = 1, 2, . . . , 𝑘. But

0 = P(𝑋1 = 𝑛− 𝑘 + 1, 𝑋2 = 𝑛− 𝑘 + 1, . . . 𝑋𝑘 = 𝑛− 𝑘 + 1)

̸= P(𝑋1 = 𝑛− 𝑘 + 1)P(𝑋2 = 𝑛− 𝑘 + 1)

× . . .×P(𝑋𝑘 = 𝑛− 𝑘 + 1) > 0.

It means that the random variables 𝑋1, 𝑋2, . . . , 𝑋𝑘 are dependent. In this
particular example dependence could be seen also from the fact the range of
possible values of 𝑋2 is {𝑋1 + 1, 𝑋1 + 2, . . . , 𝑛− 𝑘 + 2} and depends on the
value taken on by 𝑋1. Random sampling without replacement is important
for quality control and the example will be continued in next lectures. ���

Independent variables have special properties with respect to their math-
ematical expectation and variances.

Theorem 5. If random variables 𝑋 and 𝑌 are independent then

M(𝑋𝑌 ) = (M𝑋)(M𝑌 ), (2.15)
var (𝑋 + 𝑌 ) = var𝑋 + var𝑌. (2.16)

Random variables don’t necessarily need to be independent for (2.15) to
hold.

Definition 10. Random variables 𝑋 and 𝑌 are called uncorrelated if

M(𝑋𝑌 ) = (M𝑋)(M𝑌 ).

To compute the mathematical expectation of the product 𝑋𝑌 by def-
inition the probability distribution of the product should be known. The
problem of finding it will be discussed in the next lecture. It turns out
that the mathematical expectation can also be calculated from the joint
probability distribution of 𝑋 and 𝑌 .

Theorem 6. Let 𝑔(𝑢, 𝑣, . . . 𝑤) be a real-valued function of real variables 𝑢,
𝑣, . . . , 𝑤. If random variables 𝑋, 𝑌 , . . . , 𝑍 are discrete then

M𝑔(𝑋,𝑌, . . . , 𝑍) =
∑︁

(𝑢,𝑣,...,𝑤)

𝑔(𝑢, 𝑣, . . . , 𝑤)

×P(𝑋 = 𝑢, 𝑌 = 𝑣, . . . , 𝑍 = 𝑤).
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If random variables 𝑋, 𝑌 , . . . , 𝑍 are continuous with joint probability den-
sity 𝑝(𝑢, 𝑣, . . . , 𝑤) then

M𝑔(𝑋,𝑌, . . . , 𝑍) =

∫︁
· · ·

∫︁
−∞<𝑢<∞
−∞<𝑣<∞

...
−∞<𝑤<∞

𝑔(𝑢, 𝑣, . . . , 𝑤)𝑝(𝑢, 𝑣, . . . , 𝑤) 𝑑𝑢𝑑𝑣 · · · 𝑑𝑤.

Let M𝑋 = 𝑎, M𝑌 = 𝑏 then the quantity

cov (𝑋,𝑌 ) = M
(︀
(𝑋 − 𝑎)(𝑌 − 𝑏)

)︀
is called the covariance between 𝑋 and 𝑌 .

Example 14: Planar Gaussian distribution. Random variables 𝑋,
𝑌 with joint probability density

𝑝(𝑢, 𝑣) =
1

𝜎1𝜎22𝜋
√

1 − 𝑟2
𝑒−𝑓(𝑢,𝑣)/2(1−𝑟2), (2.17)

𝑓(𝑢, 𝑣) =
(︁𝑢− 𝑎

𝜎1

)︁2

− 2𝑟
(𝑢− 𝑎)(𝑣 − 𝑏)

𝜎1𝜎2
+

(︁𝑣 − 𝑏

𝜎2

)︁2

are said to have the two-dimensional normal (Gaussian) probability distri-
bution. Then

M𝑋 = 𝑎, M𝑌 = 𝑏, var𝑋 = 𝜎2
1 , var𝑌 = 𝜎2

2 , cov (𝑋,𝑌 ) = 𝑟𝜎1𝜎2.

The random variables are independent if and only if 𝑟 = 0. ���

Example 15: Counterexample to the above. Let

𝑝1(𝑢, 𝑣) =
𝑒−(𝑢2−2𝑟1𝑢𝑣+𝑣2)/2(1−𝑟21)

2𝜋
√︀

1 − 𝑟21
, 𝑝2(𝑢, 𝑣) =

𝑒−(𝑢2−2𝑟2𝑢𝑣+𝑣2)/2(1−𝑟22)

2𝜋
√︀

1 − 𝑟22

two normal densities in two dimensions. Then
i) 1

2 (𝑝1(𝑢, 𝑣) + 𝑝2(𝑢, 𝑣)) is a joint probability density;
ii) the joint probability distribution is not a planar normal normal prob-

ability density;
iii) each of the random variables with this joint probability density has

a normal distribution and they are dependent. ���
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Table 2.1: Important probability distributions and their character-
istics

probability parametric mathema- variance
Name density, set tical expec-

values tation

uniform
discrete

1

𝑛
𝑛 = 1, 2, . . .

𝑛 + 1

2

𝑛2 − 1

2

𝑘 = 1, 2, . . . , 𝑛

binomial
(︂
𝑛

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑛−𝑘 𝑛 = 1, 2, . . . 𝑛𝑝 𝑛𝑝(1 − 𝑝)

𝑘 = 0, 1, . . . , 𝑛 0 < 𝑝 < 1
geometric 𝑝(1 − 𝑝)𝑘−1 0 < 𝑝 6 1

𝑘 = 0, 1, . . .
1

𝑝

1 − 𝑝

𝑝2

Poisson
𝜆𝑘

𝑘!
𝑒−𝜆 𝜆 > 0 𝜆 𝜆

𝑘 = 0, 1, . . .

hyper-
geometric

(︀
𝑚
𝑗

)︀(︀
𝑛−𝑚
𝑘−𝑗

)︀(︀
𝑛
𝑘

)︀ 1 6 𝑚 6 𝑛
𝑘𝑚

𝑛

𝑚(𝑛−𝑚)

𝑛2

𝑗 = 0, 1, 1 6 𝑘 6 𝑛 ×𝑘(𝑛− 𝑘)

𝑛− 1
. . . , min{𝑘,𝑚}

negative
binomial

(︀
𝑘+𝑟−1

𝑘

)︀
𝑝𝑟(1 − 𝑝)𝑘 0 < 𝑝 6 1

(1 − 𝑝)𝑟

𝑝

(1 − 𝑝)𝑟

𝑝2

𝑘 = 0, 1, . . . 𝑟 = 1, 2, . . .

uniform
continu-
ous

𝑝(𝑢) =
1

𝑏− 𝑎
−∞ < 𝑎

𝑎 + 𝑏

2

(𝑏− 𝑎)2

12

𝑎 6 𝑢 6 𝑏 < 𝑏 < ∞
exponen-
tial

𝑝(𝑢) = 𝜆𝑒−𝜆𝑢 𝜆 > 0
1

𝜆

1

𝜆2

𝑢 > 0

Gaussian
(normal)

1

𝜎
√

2𝜋
𝑒−(𝑢−𝑎)2/2𝜎2 −∞ < 𝑎 < ∞ 𝑎 𝜎2

−∞ < 𝑢 < ∞ 𝜎 > 0
Continued on next page
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probability parametric mathema- variance
Name density, set tical expec-

values tation

𝜒2
𝑛, chi-

square

𝑢𝑛/2−1𝑒−𝑢/2

2𝑛/2Γ(𝑛/2)
𝑛 = 1, 2, . . . 𝑛 2𝑛

𝑢 > 0

Cauchy
1

𝜋(1 + (𝑢− 𝑎)2)
−∞ < 𝑎 < ∞ — —

−∞ < 𝑢 < ∞

Student’s
𝑡

Γ
(︀
𝑛+1
2

)︀
√
𝜋𝑛Γ

(︀
𝑛
2

)︀ −∞ < 𝑢 < ∞ 𝑛 if 𝑛 > 1 𝑛
𝑛−2 , 𝑛 > 2

×
(︀
1 + 𝑢2

𝑛

)︀−𝑛+1
2 —, 𝑛 6 1 ∞ if 𝑛 = 2

𝑛 > 0 —, 𝑛 < 2

Fisher’s
𝐹

(︁𝑚
𝑛

)︁𝑚/2 Γ
(︀
𝑚+𝑛

2

)︀
Γ
(︀
𝑚
2

)︀
Γ
(︀
𝑛
2

)︀ 𝑢 > 0
𝑛

𝑛− 2
, 𝑛 > 2

2𝑛2

𝑚(𝑚− 2)2

× 𝑢𝑚/2−1

(1 + 𝑚𝑢
𝑛 )(𝑚+𝑛)/2

×𝑚 + 𝑛− 2

𝑛− 4
𝑚,𝑛 > 0 𝑛 > 4
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Lecture

3
Probability distributions of functions
of several random variables

When constructing mathematical models for real-world phenomena (i.e.
in the field of Economics) one searches first for functional relations between
variables. One seeks how the ’output’ variables of the model depend on
its ’input’ variables. A typical problem here is to determine the law of
probability distribution of the output variables given the laws of probability
distribution of the input variables.

Example 16: Hypergeometric distribution, continuation of Ex-
ample 13. A milk-bottling machine produced 𝑛 bottles and 𝑘 of them are
selected at random for quality control. Among 𝑛 there are 𝑚 flawed bottle.
Let 𝑋 be the number of flawed bottle in the sample for the quality control.
What is the probability distribution of 𝑋? The settings for the experiment
are exactly those from Example 13. Assume additionally that flawed bot-
tles are 1 through 𝑚. Then 𝑋𝑖 = 𝑗 for 𝑗 6 𝑚 means that the 𝑖-th bottle is
flawed while the same event for 𝑗 > 𝑚 means the 𝑖-th bottle is good. The
random variables 𝑋1, 𝑋2, . . . , 𝑋𝑘 are input variables. Then 𝑋 is an output
variable defined as follows:

𝑋 = 0 if 𝑋1 > 𝑚;
𝑋 = 𝑗 if 𝑋𝑗 6 𝑚 and 𝑋𝑗+1 > 𝑚, 𝑗 = 1, 2, . . . , 𝑘 − 1;

𝑋 = 𝑘 if 𝑋𝑘 6 𝑚.

It is a discrete random variable with values 0, 1, . . . , 𝑘. To evaluate proba-
bilities P(𝑋 = 𝑗) for 𝑗 = 0, 1, . . . , 𝑘 we have to sum according to formula
(1.2) probabilities of all favorable cases, i.e. events

{𝑋1 = 𝑢1, 𝑋2 = 𝑢2, . . . , 𝑋𝑘 = 𝑢𝑘}

such that

1 6 𝑢1 < 𝑢2 < . . . < 𝑢𝑗 6 𝑚 < 𝑢𝑗+1 < . . . < 𝑢𝑘 6 𝑛.

According to the rules of combinatorics, there are exactly
(︀
𝑚
𝑗

)︀
combinations

of 𝑢1, 𝑢2, . . . , 𝑢𝑗 and
(︀
𝑛−𝑚
𝑘−𝑗

)︀
combinations of 𝑢𝑗+1, 𝑢𝑗+2, . . . , 𝑢𝑘 satisfying
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these conditions. Since each favorable case has probability
(︀
𝑛
𝑘

)︀−1, the sum
giving the desired probability is

P(𝑋 = 𝑗) =

(︀
𝑚
𝑗

)︀(︀
𝑛−𝑚
𝑘−𝑗

)︀(︀
𝑛
𝑘

)︀ .

This probability distribution is called hyper-geometric.
Usually the total 𝑚 of flawed items in unknown. A quality control

procedure might be as follows. Some 𝑘 items are sampled from a party of
size 𝑛. If the quantity 𝑋 of flawed items is below a limit 𝑐, 𝑋 6 𝑐, the party
is accepted. Parameters 𝑛 and 𝑐 should be chosen to minimize probabilities
of wrong decisions. ���

Example 17: Testing a hypothesis on a probability of an event.
Assume someone wants to verify if the probability of an event 𝐴 equals 𝑝.
Is it true that zero pocket in roulette appears with probability 1/37? Is
it true that a birth of a boy is as probable as birth of a girl, i.e. 𝑝boy =
𝑝girl = 0.5? After conducting 𝑛 observation in identical conditions (what
makes the outcomes of observations independent) he get a random number
𝑋 of occurrences of that event. From Example 5 we know that 𝑋 has the
binomial probability distribution with parameters 𝑛, 𝑝. Its mathematical
expectation equals M𝑋 = 𝑛𝑝. If the hypothesis is true, 𝑋 should be close
to 𝑛𝑝 and by a similar reason the count (𝑛−𝑋) of ‘failures’ should be close
to 𝑛(1−𝑝) = 𝑛𝑞 with 𝑞 = 1−𝑝. Consider the 𝜒2-statistic (read: chi-square):

𝜒2 =
(𝑋 − 𝑛𝑝)2

𝑛𝑝
+

(𝑛−𝑋 − 𝑛𝑞)2

𝑛𝑞
.

If the hypothesis on the probability of event 𝐴 is true, the value of 𝜒2

is likely to be small (because the numerators on the rations are expected
small). A little transformation

(𝑋 − 𝑛𝑝)2

𝑛𝑝
+

(𝑛−𝑋 − 𝑛𝑞)2

𝑛𝑞
=

(𝑋 − 𝑛𝑝)2

𝑛𝑝
+

(𝑛−𝑋 − 𝑛(1 − 𝑝))2

𝑛𝑞

=
(𝑋 − 𝑛𝑝)2

𝑛

(︁1

𝑝
+

1

𝑞

)︁
=

(𝑋 − 𝑛𝑝)2

𝑛𝑝𝑞
,

So, one has to study the law of probability distribution for the output
random variable 𝜒2 = 𝑔(𝑋) with 𝑔(𝑢) = (𝑢− 𝑛𝑝)2/𝑛𝑝𝑞. ���
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When input variables are discrete, computations are mainly based on
summation formula (1.2) for favorable cases.

Theorem 7. Let 𝑋, 𝑌 , and 𝑍 be discrete (generally, dependent) random
variables. Then

P(𝑋 = 𝑢) =
∑︁
𝑣,𝑤

P(𝑋 = 𝑢, 𝑌 = 𝑣,𝑊 = 𝑤), (3.1)

P(𝑋 = 𝑢, 𝑌 = 𝑣) =
∑︁
𝑤

P((𝑋 = 𝑢, 𝑌 = 𝑣,𝑊 = 𝑤). (3.2)

The proof is a direct reference to (1.2). The discrete probability distri-
butions on the left hand sides of (3.1) and (3.2) are called marginal distri-
butions of 𝑋, and of 𝑋 and 𝑌 , respectively (relative to the joint probability
distribution of all three random variables).

Theorem 8. Let 𝑋 and 𝑌 be integer non-negative independent random
variables. Then

P(𝑋 + 𝑌 = 𝑛) =

𝑛∑︁
𝑘=0

P(𝑋 = 𝑘)P(𝑌 = 𝑛− 𝑘). (3.3)

Proof. Since both 𝑋 and 𝑌 are non-negative, event 𝑋 + 𝑌 = 𝑛 has a finite
number of favorable cases: {𝑋 = 0, 𝑌 = 𝑛}, {𝑋 = 1, 𝑌 = 𝑛 − 1}, . . . ,
{𝑋 = 𝑛, 𝑌 = 0}. Then,

P(𝑋 + 𝑌 = 𝑛) =

𝑛∑︁
𝑘=0

P(𝑋 = 𝑘, 𝑌 = 𝑛− 𝑘) (by (1.2))

=

𝑛∑︁
𝑘=0

P(𝑋 = 𝑘)P(𝑌 = 𝑛− 𝑘) (by independence)

The formula is proven.

Example 18: Poisson process. Assume customers arrive randomly
at an on-line store of an world-wide electronic commerce company. Assume
further the postulates: 1) the probability of an arrival between times 𝑡 and
𝑡+ ℎ equals 𝜆ℎ+ 𝑜(ℎ) where 𝑜(ℎ) is a term negligibly small (𝑜(ℎ)/ℎ → 0 as
ℎ → 0), no arrivals occur with probability 1 − 𝜆ℎ + 𝑜(ℎ); 2) the probability
of two or more arrivals between times 𝑡 and 𝑡+ℎ is 𝑜(𝑡); 3) arrivals between
times 𝑡1 and 𝑡2, between 𝑡2 and 𝑡3, etc occur statistically independently.
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Denote by 𝒩𝑡 the arrivals count during the time-interval from 0 to 𝑡, 𝑡 > 0,
let 𝒩0 = 0. We have thus defined an infinite family of random variables. The
random variables {𝒩𝑡; 𝑡 > 0} are called the Poisson process with intensity 𝜆
(this will be explained in a moment). Divide the time interval (0, 𝑡) into 𝑛
equal slots of length 𝑡/𝑛. Then no arrivals during the interval are observed
if and only if no arrivals are observed during each of the slots. Hence the
probability of the event 𝒩𝑡 = 0 equals

(1 − 𝜆(𝑡/𝑛) + 𝑜(𝑡/𝑛))𝑛

because of Postulates 1 and 3. As the number of slots 𝑛 grows the probability
tends to 𝑒−𝜆𝑡. Let 𝑘 be a positive integer, and 𝑛 be much greater than 𝑘.
Consider an event 𝒩𝑡 = 𝑘. The probability that two or more events occur
in the same time slot is 𝑜(𝑡/𝑛) by Postulate 2. Then each time-slot may
hold zero or one event independently of the other time-slots. We may use
the formula for the binomial probability distribution for the probability of
the event 𝒩𝑡 = 𝑘:(︂

𝑛

𝑘

)︂
(𝜆(𝑡/𝑛) + 𝑜(𝑡/𝑛))𝑘(1 − 𝜆(𝑡/𝑛) + 𝑜(𝑡/𝑛))𝑛−𝑘.

By virtue of the Poisson theorem, this probability tends to

(𝜆𝑡)𝑘

𝑘!
𝑒−𝜆𝑡

as 𝑛 tends to ∞, since the probability of a success 𝜆(𝑡/𝑛) + 𝑜(𝑡/𝑛) vanishes
so that the product 𝑛 × (𝜆(𝑡/𝑛) + 𝑜(𝑡/𝑛)) → 𝜆. In effect, the counts 𝒩𝑡,
𝑡 > 0 have the Poisson probability distributions with parameter 𝜆𝑡. By
Postulate 3, the increments

𝒩𝑡1 , 𝒩𝑡2 −𝒩𝑡1 , . . . , 𝒩𝑡𝑛 −𝒩𝑡𝑛−1

are independent random variables for all 𝑛 > 2, 0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑛. A
increment 𝒩𝑡+ℎ−𝒩𝑡 has the Poisson probability distribution with parameter
𝜆ℎ and mathematical expectation 𝜆𝑡. The intensity of arrivals is then

lim
ℎ→0

M(𝒩𝑡+ℎ −𝒩𝑡)

ℎ
= 𝜆.

Let {𝒩𝑡; 𝑡 > 0} be a Poisson process with intensity 𝜆 of arrivals from
one country to the on-line store, let {𝒩̃𝑡; 𝑡 > 0} be a Poisson process with
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intensity 𝜇 of arrivals from another country. Let us find the probability
distribution for the total number of arrivals during time 𝑡. Since 𝒩𝑡 has the
Poisson probability distribution with parameter 𝜆𝑡 and 𝒩̃𝑡 has the Poisson
probability distribution with parameter 𝜇𝑡,

P(𝒩𝑡 + 𝒩̃𝑡 = 𝑛) =

𝑛∑︁
𝑘=0

P(𝒩𝑡 = 𝑘)P(𝒩̃𝑡 = 𝑛− 𝑘) by (3.3)

=

𝑛∑︁
𝑘=0

(𝜆𝑡)𝑘

𝑘!
𝑒−𝜆𝑡 (𝜇𝑡)𝑛−𝑘

(𝑛− 𝑘)!
𝑒−𝜇𝑡

=
𝑒−(𝜆+𝜇)𝑡

𝑛!

𝑛∑︁
𝑘=0

𝑛!

𝑘!(𝑛− 𝑘)!
(𝜆𝑡)𝑘(𝜇𝑡)𝑛−𝑘

=
(𝜆 + 𝜇)𝑛𝑡𝑛

𝑛!
𝑒−(𝜆+𝜇)𝑡 by Newton’s binomial formula.

The sum of two independent Poisson process is again a Poisson process with
sum intensity. ���

Example 19: Connection between Poisson process and expo-
nential probability distribution. Let {𝒩𝑡; 𝑡 > 0} be a Poisson process
with intensity 𝜆. We are going to study an interarrival interval. The aim of
this example is to demonstrate many ideas in cooperation.

Let us calculate the probability that next arrival takes place between
time 𝑡 and 𝑡 + ℎ given that an arrival occurred as instant 𝑠, 𝑠 < 𝑡. In
course of calculations we will see that the condition, which can be written
as 𝒩𝑠−𝛿 ̸= 𝒩𝑠 for sufficiently small 𝛿, has probability zero. So, we have
to define the conditional probability in question again. We will use the
following definition of the conditional probability of an event 𝐴 given an
arrival at time 𝑠:

P(𝐴 | arrival at time 𝑠) = lim
𝛿→0,
𝛿>0

P(𝐴 ∩ {𝒩𝑠−𝛿 ̸= 𝒩𝑠})

P(𝒩𝑠−𝛿 ̸= 𝒩𝑠)
.

We have

P(𝒩𝑠−𝛿 ̸= 𝒩𝑠) = 1 −P(𝒩𝑠 −𝒩𝑠−𝛿 = 0)

= 1 − 𝑒−𝜆𝛿.

The first arrival after time 𝑠 occurs between times 𝑡 and 𝑡+ ℎ if and only if
𝒩𝑠 = 𝒩𝑡, 𝒩𝑡+ℎ > 𝒩𝑡. Hence, the probability in the numerator of the ratio
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for the conditional probability is

P(𝒩𝑠 −𝒩𝑠−𝛿 > 0,𝒩𝑡 −𝒩𝑠 = 0,𝒩𝑡+ℎ −𝒩𝑡 > 0)

= (1 − 𝑒−𝜆𝛿) · 𝑒−𝜆(𝑡−𝑠) · (1 − 𝑒−𝜆ℎ).

Then the ratio is

(1 − 𝑒−𝜆𝛿) · 𝑒−𝜆(𝑡−𝑠) · (1 − 𝑒−𝜆ℎ)

(1 − 𝑒−𝜆𝛿)
= 𝑒−𝜆(𝑡−𝑠) · (1 − 𝑒−𝜆ℎ)

Denote the interarrival time by 𝑇 , then the probability

P(𝑢 < 𝑇 < 𝑢 + ℎ) = 𝑒−𝜆𝑢 · (1 − 𝑒−𝜆ℎ), 𝑢 = 𝑡− 𝑠

and the probability density of 𝑇 is the exponential density 𝜆𝑒−𝜆𝑢. ���

Let us now consider continuous variables. Let random variable 𝑋 be
given together with its probability density 𝑝(𝑢), and a function 𝑔(𝑢) such
that 𝑔′(𝑢) ̸= 0 in an interval [𝑢1, 𝑢2) (hence either 𝑔′(𝑢) > 0 or 𝑔′(𝑢) < 0
everywhere in [𝑢1, 𝑢2)). Set 𝑣1 = 𝑔(𝑢1), 𝑣2 = 𝑔(𝑢2), let 𝑢 = ℎ(𝑣) is the
inverse function of 𝑔(𝑢). It is necessarily a one-to-one mapping of [𝑣1, 𝑣2) if
ℎ′(𝑣) > 0 or (𝑣2, 𝑣1] if ℎ′(𝑣) < 0, onto [𝑢1, 𝑢2). Denote by 𝑝(𝑢) the proba-
bility density of 𝑌 = 𝑔(𝑋). Then, by the change of variable in integration,

P(𝑢1 < 𝑋 < 𝑢2) =

𝑢2∫︁
𝑢1

𝑝(𝑢) 𝑑𝑢 =

𝑣2∫︁
𝑣1

ℎ′(𝑣)𝑝(ℎ(𝑣)) 𝑑𝑣. (3.4)

If ℎ′(𝑣) > 0 then 𝑣1 < 𝑣2. The integral in the right-hand side of (3.4)
equals the probability P(𝑣1 < 𝑌 < 𝑣2). But, if ℎ′(𝑣) < 0, then 𝑣2 < 𝑣1, and

𝑣2∫︁
𝑣1

ℎ′(𝑣)𝑝(ℎ(𝑣)) 𝑑𝑣 = −
𝑣1∫︁

𝑣2

ℎ′(𝑣)𝑝(ℎ(𝑣)) 𝑑𝑣 =

𝑣1∫︁
𝑣2

|ℎ′(𝑣)| 𝑝(ℎ(𝑣)) 𝑑𝑣.

The right-hand side of the formula above is P(𝑣2 < 𝑌 < 𝑣1). Finally, the
probability density of 𝑌 = 𝑔(𝑋) should be (see (2.5)).

𝑝(𝑣) = |ℎ′(𝑣)| 𝑝(ℎ(𝑣)). (3.5)

Example 20: Linear function of a Gaussian random variable.
Let 𝑋 have a normal probability distribution (2.7), and 𝑔(𝑢) = 𝛼𝑢 + 𝛽.
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Then ℎ(𝑣) = (𝑣 + 𝛽)/𝛼, ℎ′(𝑣) = 1/𝛼. Then, by virtue of (3.5) and (2.7),

𝑝(𝑣) =
1

|𝛼|
𝑝
(︁𝑣 + 𝛽

𝛼

)︁
=

1

(|𝛼|𝜎)
√

2𝜋
𝑒−(𝑢−𝑎𝛼−𝛽)2/2(𝛼𝜎)2 ,

i.e. 𝛼𝑋 +𝛽 has the normal probability distribution with parameters 𝛼𝑎+𝛽
and (𝛼𝜎)2. ���

Theorem 9. Let 𝑋, 𝑌 , and 𝑍 be (dependent) random variables with joint
probability density 𝑝(𝑢, 𝑣, 𝑤). Then the marginal densities of 𝑋, and of 𝑋
and 𝑌 are

𝑝1(𝑢) =

∫︁∫︁
−∞<𝑣<∞
−∞𝑤<∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑣𝑑𝑤, (3.6)

𝑝1,2(𝑢, 𝑣) =

∞∫︁
−∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑤. (3.7)

Proof. First,

P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2)

= P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2,−∞ < 𝑍 < ∞).

Then,

P(𝑢1 < 𝑋 < 𝑢2, 𝑣1 < 𝑌 < 𝑣2,−∞ < 𝑍 < ∞) =

∫︁∫︁∫︁
𝑢1<𝑢<𝑢2
𝑣1<𝑣<𝑣2

−∞<𝑤<∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑢𝑑𝑣𝑑𝑤.

Turning to a repeated integration from the triple integral we get

∫︁∫︁∫︁
𝑢1<𝑢<𝑢2
𝑣1<𝑣<𝑣2

−∞<𝑤<∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑢𝑑𝑣𝑑𝑤 =

∫︁∫︁
𝑢1<𝑢<𝑢2
𝑣1<𝑣<𝑣2

(︂ ∞∫︁
−∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑤

)︂
𝑑𝑢𝑑𝑣.
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Comparison of the right-hand side of this equality to (2.14) proves (3.6). To
prove (3.7), write

P(𝑢1 < 𝑋 < 𝑢2,𝑣1 < 𝑌 < 𝑣2)

= P(𝑢1 < 𝑋 < 𝑢2,−∞ < 𝑌 < ∞,−∞ < 𝑍 < ∞)

=

∫︁∫︁∫︁
𝑢1<𝑢<𝑢2
−∞<𝑣<∞
−∞<𝑤<∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑢𝑑𝑣𝑑𝑤

=

𝑢2∫︁
𝑢1

(︂ ∫︁∫︁
−∞<𝑣<∞
−∞<𝑤<∞

𝑝(𝑢, 𝑣, 𝑤) 𝑑𝑣𝑑𝑤

)︂
𝑑𝑢.

Example 21: Marginals for planar Gaussian probability den-
sity. The marginal probability densities

∞∫︁
−∞

𝑝(𝑢, 𝑣) 𝑑𝑢 and
∞∫︁

−∞

𝑝(𝑢, 𝑣) 𝑑𝑢

from the planar normal probability density (2.17) are normal probability
densities

1

𝜎1

√
2𝜋

𝑒
− (𝑢−𝑎)2

2𝜎2
1 and

1

𝜎2

√
2𝜋

𝑒
− (𝑣−𝑏)2

2𝜎2
2

correspondingly. ���

Theorem 10. Let 𝑋 and 𝑌 be continuous random variables with joint
probability density 𝑝(𝑥, 𝑦), let functions 𝑔1(𝑥, 𝑦) and 𝑔2(𝑥, 𝑦) be continuous
and one-to-one mapping. Assume also that continuous partial derivatives
of 𝑔1 and 𝑔2 with respect to 𝑥 and 𝑦 exist. Functions 𝑔1 and 𝑔2 map a
rectangle 𝑢1 < 𝑢 < 𝑢2, 𝑣1 < 𝑣 < 𝑣2 into a planar domain 𝐺. Let the
functional determinant ⃒⃒⃒⃒

⃒⃒⃒𝜕𝑔1𝜕𝑥

𝜕𝑔1
𝜕𝑦

𝜕𝑔2
𝜕𝑥

𝜕𝑔2
𝜕𝑦

⃒⃒⃒⃒
⃒⃒⃒ ̸= 0
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in the rectangle. Denote by 𝑥 = ℎ1(𝑢1, 𝑢2) and 𝑦 = ℎ2(𝑢1, 𝑢2) the inverse
transform for 𝑢 = 𝑔1(𝑥, 𝑦) and 𝑣 = 𝑔2(𝑥, 𝑦),

𝐽(𝑥, 𝑦) =

⃒⃒⃒⃒
⃒⃒⃒𝜕ℎ1

𝜕𝑢

𝜕ℎ1

𝜕𝑣
𝜕ℎ2

𝜕𝑢

𝜕ℎ2

𝜕𝑣

⃒⃒⃒⃒
⃒⃒⃒ .

Then the joint probability density 𝑝(𝑢, 𝑣) of random variables 𝑈 = 𝑔1(𝑋,𝑌 )
and 𝑉 = 𝑔2(𝑋,𝑌 ) is

𝑝(𝑢, 𝑣) = 𝑝(ℎ1(𝑢, 𝑣), ℎ2(𝑢, 𝑣))|𝐽(ℎ1(𝑥, 𝑦), ℎ2(𝑥, 𝑦))|. (3.8)

Proof. The proof is based on a formula from multivariate calculus:

P(𝑥1 < 𝑋 < 𝑥2, 𝑦1 < 𝑌 < 𝑦2) =

∫︁∫︁
𝑥1<𝑥<𝑥2
𝑦1<𝑦<𝑦2

𝑝(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

=

∫︁∫︁
𝐺

𝑝(ℎ1(𝑢, 𝑣), ℎ2(𝑢, 𝑣))|𝐽 | 𝑑𝑢𝑑𝑣 = P((𝑈, 𝑉 ) ∈ 𝐺).

Since the choice of 𝑥1, 𝑥2, 𝑦1, and 𝑦2 is arbitrary, we get (3.8).

Theorems 9 and 10 let us obtain useful formulae for probability density
for results of main arithmetic operations on continuous random variables.

Example 22: Probability density for a sum of two variables.
Let 𝑋 and 𝑌 have a joint probability density 𝑝(𝑥, 𝑦). Then the probability
density of 𝑋 + 𝑌 is

𝑝𝑋+𝑌 (𝑢) =

∞∫︁
−∞

𝑝(𝑥, 𝑢− 𝑥) 𝑑𝑥 (3.9)

=

∞∫︁
−∞

𝑝(𝑢− 𝑦, 𝑦) 𝑑𝑦. (3.10)

Indeed, let 𝑈 = 𝑋 and 𝑉 = 𝑋 + 𝑌 , then 𝑋 = 𝑈 and 𝑌 = 𝑉 − 𝑈 . Here
ℎ1(𝑢, 𝑣) = 𝑢 and ℎ2(𝑢, 𝑣) = 𝑣 − 𝑢 and the functional determinant 𝐽 is⃒⃒⃒⃒

1 0
−1 1

⃒⃒⃒⃒
= 1.
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Hence the joint probability density of 𝑋 and 𝑋 + 𝑌 is

𝑝(𝑢, 𝑣 − 𝑢) · 1 = 𝑝(𝑢, 𝑣 − 𝑢).

Now the desired probability density follows from (3.6). ���

Example 23: Purchase statistics. Let the purchase sum for one
customer have the normal probability density (2.4). Assuming that purchase
sums of 𝑛 different customers are independent and identically distributed,
what is the probability distribution for the total cost of the sold goods and
what is the average purchase sum? Denote by 𝑋1, 𝑋2, . . . , 𝑋𝑛 the purchase
sums of the customers. Then the joint probability density of 𝑋1 and 𝑋2 is

𝑝(𝑢, 𝑣) =
1

𝜎2 · 2𝜋
𝑒−((𝑢−𝑎)2+(𝑣−𝑎)2)/2𝜎2

.

Then the probability density of 𝑋1 + 𝑋2 is

𝑝2(𝑣) =

∞∫︁
−∞

𝑝(𝑥, 𝑣 − 𝑥) 𝑑𝑥

where

𝑝(𝑥, 𝑣 − 𝑥) =
1

𝜎2 · 2𝜋
𝑒−((𝑥−𝑎)2+(𝑣−𝑥−𝑎)2)/2𝜎2

=
1

𝜎2 · 2𝜋
𝑒−((𝑥−𝑎)2+(𝑥−𝑎−(𝑣−2𝑎))2)/2𝜎2

=
1

𝜎2 · 2𝜋
𝑒−(2(𝑥−𝑎)2+2(𝑥−𝑎)(𝑣−2𝑎)+(𝑣−2𝑎)2)/2𝜎2

=
1

𝜎2 · 2𝜋
𝑒−(2(𝑥−𝑎+(𝑣−2𝑎)/2)2+(𝑣−2𝑎)2/2)/2𝜎2

=

√
2

𝜎
√

2𝜋
𝑒−2(𝑥−𝑎+(𝑣−2𝑎)/2)2/2𝜎2 1

𝜎
√

2
√

2𝜋
𝑒−(𝑣−2𝑎)2/4𝜎2

So,
∞∫︁

−∞

𝑝(𝑥, 𝑣 − 𝑥) 𝑑𝑥 =
1

𝜎
√

2
√

2𝜋
𝑒−(𝑣−2𝑎)2/4𝜎2

We conclude that 𝑋1 + 𝑋2 has a normal probability distribution with pa-
rameters 2𝑎 and 2𝜎2. Now, 𝑋1 + 𝑋2 and 𝑋3 are independent and we can
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repeat computations to find out that 𝑋1 + 𝑋2 + 𝑋3 has the normal proba-
bility density with parameters 3𝑎 and 3𝜎3. By induction, the total cost of
sold goods 𝑋1 + 𝑋2 + . . . + 𝑋𝑛 has the normal probability density

𝑝𝑛(𝑣) =
1

𝜎
√
𝑛
√

2𝜋
𝑒−(𝑣−𝑛𝑎)2/2𝑛𝜎2

.

Then the average purchase is

𝑋 =
𝑋1 + 𝑋2 + . . . + 𝑋𝑛

𝑛

We may apply result from Example 20 with 𝛼 = 1/𝑛 and 𝛽 = 0 to get the
probability density √

𝑛

𝜎
√

2𝜋
𝑒−𝑛(𝑣−𝑎)2/2𝜎2

.

with the mathematical expectation 𝑎 and variance 𝜎2/𝑛. ���

Example 24: Chi-square distribution (𝜒2-distribution). Let 𝑋1,
𝑋2, . . . , 𝑋𝑛 be independent with standard normal distribution (𝑎 = 0,
𝜎 = 1). Let 𝑌𝑛 = 𝑋2

1 + 𝑋2
2 + . . . + 𝑋2

𝑛. First we’ll find the density of
probability distribution of 𝑋2

1 . Assume 𝑡 > 0. Then

P(𝑡− 𝛿 < 𝑋2
1 < 𝑡 + 𝜂) = P(−

√
𝑡 + 𝜂 < 𝑋1 < −

√
𝑡− 𝛿)

+ P(
√
𝑡− 𝛿 < 𝑋1 <

√
𝑡 + 𝜂)

=

−
√
𝑡−𝛿∫︁

−
√
𝑡+𝜂

1√
2𝜋

𝑒−
𝑢2

2 𝑑𝑢 +

√
𝑡+𝜂∫︁

√
𝑡−𝛿

1√
2𝜋

𝑒−
𝑢2

2 𝑑𝑢

= 2

√
𝑡+𝜂∫︁

√
𝑡−𝛿

1√
2𝜋

𝑒−
𝑢2

2 𝑑𝑢,

𝑝𝑋2
1
(𝑡) =

2√
2𝜋

𝑒−(
√
𝑡)2/2 · 1

2
√
𝑡

=
1√
2𝑡𝜋

𝑒−𝑡/2

Using the Euler’s Gamma function

Γ(𝑎) =

∞∫︁
0

𝑥𝑎−1𝑒−𝑥 𝑑𝑥, Γ(𝑎 + 1) = 𝑎Γ(𝑎), Γ(1/2) =
√
𝜋,
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one can write

𝑝𝑋2
1
(𝑡) =

𝑡−1/2𝑒−
𝑡
2

21/2Γ(1/2)
.

By induction one can prove that the probability density of 𝑌𝑛 is

𝑝𝑌𝑛
(𝑥) =

𝑥
𝑛
2 −1𝑒−𝑥/2

2𝑛/2Γ(𝑛/2)
.

Assuming the formula for 𝑛, we can prove it for 𝑛 + 1:

𝑝𝑌𝑛+1
(𝑥) =

𝑥∫︁
0

𝑢
𝑛
2 −1𝑒−𝑢/2

2𝑛/2Γ(𝑛/2)

(𝑥− 𝑢)−
1
2 𝑒−(𝑥−𝑢)/2

21/2Γ(1/2)
𝑑𝑢

=
1

2(𝑛+1)/2Γ(𝑛/2)Γ(1/2)
𝑒−𝑥/2

𝑥∫︁
0

𝑢
𝑛
2 −1(𝑥− 𝑢)−

1
2 𝑑𝑢

=
𝑥

𝑛+1
2 −1

2(𝑛+1)/2Γ(𝑛/2)Γ(1/2)
𝑒−𝑥/2𝐵

(︁𝑛
2
,

1

2

)︁
=

𝑥
𝑛+1
2 −1

2(𝑛+1)/2Γ((𝑛 + 1)/2)
𝑒−𝑥/2.

The parameter 𝑛 is called degrees of freedom. ���

Example 25: Probability density for a product of two variables.
Let 𝑋 and 𝑌 have a joint probability density 𝑝(𝑥, 𝑦). Then the probability
density of 𝑋 · 𝑌 is

𝑝𝑋·𝑌 (𝑢) =

∞∫︁
−∞

𝑝(𝑥, 𝑢/𝑥)

|𝑢|
𝑑𝑥

=

∞∫︁
0

𝑝(𝑥, 𝑢/𝑥)

𝑢
𝑑𝑥−

0∫︁
−∞

𝑝(𝑥, 𝑢/𝑥)

𝑢
𝑑𝑥. (3.11)

Really, let 𝑈 = 𝑋 and 𝑉 = 𝑋𝑌 , then 𝑋 = 𝑈 and 𝑌 = 𝑉/𝑈 . Here
ℎ1(𝑢, 𝑣) = 𝑢 and ℎ2(𝑢, 𝑣) = 𝑣/𝑢 and the functional determinant 𝐽 is⃒⃒⃒⃒

1 0
−𝑣/𝑢2 1/𝑢

⃒⃒⃒⃒
= 1/𝑢.
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Hence the joint probability density of 𝑋 and 𝑋 · 𝑌 is

𝑝(𝑢, 𝑣/𝑢)
1

|𝑢|
.

Now the desired probability density follows from (3.6). ���

Example 26: Probability density for a ratio of two variables.
Let 𝑋 and 𝑌 have a joint probability density 𝑝(𝑥, 𝑦). Then the probability
density of 𝑋/𝑌 is

𝑝𝑋/𝑌 (𝑢) =

∞∫︁
−∞

|𝑥| 𝑝(𝑥𝑢, 𝑥) 𝑑𝑥

=

∞∫︁
0

𝑥𝑝(𝑥𝑢, 𝑥) 𝑑𝑥−
0∫︁

−∞

𝑥𝑝(𝑥𝑢, 𝑥) 𝑑𝑥.

Really, let 𝑈 = 𝑌 and 𝑉 = 𝑋/𝑌 , then 𝑌 = 𝑈 and 𝑋 = 𝑈𝑉 . Here
ℎ1(𝑢, 𝑣) = 𝑣 and ℎ2(𝑢, 𝑣) = 𝑢𝑣 and the functional determinant 𝐽 is⃒⃒⃒⃒

0 1
𝑣 𝑢

⃒⃒⃒⃒
= −𝑣.

Hence the joint probability density of 𝑋 and 𝑋 · 𝑌 is

|𝑣|𝑝(𝑢𝑣, 𝑣).

Now the desired probability density follows from (3.6). ���

Example 27: Student’s 𝑡 and Fisher’s 𝐹 . Next two continuous
probability distribution play important role in statistics. If 𝑋 is a normal
random variable with 𝑎 = 0 and 𝜎 = 1, 𝑌 > 0 is a continuous random
variable independent of 𝑋 and 𝑛𝑌 2 has the 𝜒2-distribution with 𝑛 degrees
of freedom, then after certain efforts one obtains by (3.11) that 𝑡 = 𝑋/𝑌
has the probability density

𝑝(𝑢) =
Γ
(︀
𝑛+1
2

)︀
√
𝜋𝑛Γ

(︀
𝑛
2

)︀ (1 + 𝑢2/𝑛)−(𝑛+1)/2 .

It is called the 𝑡-distribution with 𝑛 degree of freedom.
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Let random variables 𝑋 and 𝑌 have 𝜒2-distribution with 𝑚 and 𝑛 de-
grees of freedom. Then the ration

𝐹 =
𝑋/𝑚

𝑌/𝑛
=

𝑛𝑋

𝑚𝑌

has a probability density

𝑝(𝑢) =
(︁𝑚
𝑛

)︁𝑚/2 Γ((𝑚 + 𝑛)/2)

Γ(𝑚/2)Γ(𝑛/2)
· 𝑢𝑚/2−1

(1 + 𝑚𝑢/𝑛)(𝑚+𝑛)/2
, 𝑢 > 0.

This is called the 𝐹 -distribution with 𝑚 and 𝑛 degrees of freedom. ���

Of course, theorem 10 doesn’t cover all transformations important for
practice. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent identically distributed ran-
dom variables. The order statistics are random variables 𝑋1:𝑛, 𝑋2:𝑛, . . . ,
𝑋𝑛:𝑛 such that 𝑋𝑘:𝑛 is the 𝑘-th in magnitude among 𝑋1, 𝑋2, . . . , 𝑋𝑛.
On other words, the order statistics are the variables 𝑋1, 𝑋2, . . . , 𝑋𝑛

sorted in ascending order. 𝑋1:𝑛 is the smallest, 𝑋𝑛:𝑛 is the largest. The
transformation carried out by sorting is not a one-to-one mapping, since
𝑛! different permutations of same 𝑛 values result in equal order statistics.
So, Theorem 10 may not be applied to find the joint probability density for
continuous random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛.

Example 28: Planning a market warehouse. The daily demand 𝑋
at a city market is a random variable with known cumulative distribution
function 𝐹 (𝑢) = P(𝑋 < 𝑢). The warehouse capacity should be greater than
the largest demand during a year. By every next morning the warehouse is
refilled with stocks to be ready for the new working day of the market. If
the demand is greater than the warehouse capacity then sellers lose poten-
tial profits. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be the demands for 𝑛 successive working
days (𝑛 = 365). They are assumed independent and identically distributed
with 𝑋. The largest demand is then 𝑌 = 𝑋𝑛:𝑛 = max{𝑋1, 𝑋2, . . . , 𝑋𝑛}.
Knowing the cumulative distribution function 𝐹𝑛(𝑢) = P(𝑌 < 𝑢) is fruit-
ful: choose the warehouse capacity 𝐶𝛼 as the smallest value such that
𝐹𝑛(𝐶𝛼) > 1 − 𝛼. Then the largest demand exceeds the warehouse capacity
with probability

P(𝑌 > 𝐶𝛼) = 1 − 𝐹𝑛(𝐶𝛼) 6 𝛼,

which means that the profit is lost not more often than in 𝛼 × 100 % of
years. One has:

𝐹𝑛(𝑢) = P(𝑋𝑛:𝑛 < 𝑢) = 1−P(𝑋1 < 𝑢,𝑋2 < 𝑢, . . . ,𝑋𝑛 < 𝑢) = 1− (𝐹 (𝑢))𝑛.

���
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Lecture

4
Chebyshev’s inequality and Laws
of large numbers

Often the probability distribution of a random variable 𝑋 is unknown.
One may use statistical techniques to guess it, as it will be demonstrated in
next lectures. Surprisingly, knowledge of just a few characteristics of 𝑋 can
be useful to give bounds on 𝑋 or on certain probabilities of events generated
by 𝑋. Moreover, such inexact bounds can be used to establish nontrivial
facts about series of random variables.

The basic result here if the famous Chebyshev’s inequality.

Theorem 11. If 𝑋 is a random variable with mathematical expectation
M𝑋 = 𝑚 and variance 𝜎2 = var𝑋. Then

P(|𝑋 −𝑚| > 𝑡) 6
𝜎2

𝑡2
. (4.1)

Proof. Assume additionally that 𝑋 is continuous with probability density
𝑝(𝑢). This assumption simplifies the proof. The statement holds for arbi-
trary random variables with finite 𝑚 and 𝜎2. We have

var𝑋 =

∞∫︁
−∞

(𝑢−𝑚)2 𝑝(𝑢) 𝑑𝑢

=

∫︁
|𝑢−𝑚|>𝑡

(𝑢−𝑚)2 𝑝(𝑢) 𝑑𝑢 +

∫︁
|𝑢−𝑚|6𝑡

(𝑢−𝑚)2 𝑝(𝑢) 𝑑𝑢

>
∫︁

|𝑢−𝑚|>𝑡

(𝑢−𝑚)2 𝑝(𝑢) 𝑑𝑢

>
∫︁

|𝑢−𝑚|>𝑡

𝑡2 𝑝(𝑢) 𝑑𝑢 = 𝑡2 P(|𝑋 −𝑚| > 𝑡).

Dividing by 𝑡2 we get the desired result.

The meaning of the Chebyshev’s inequality is in the ability to estimate
the probability that the random variable 𝑋 takes on a value from an interval

52



(𝑚− 𝑡,𝑚+ 𝑡). It is a symmetric interval about the mean value 𝑚 of 𝑋. In
general, an interval (𝑢1, 𝑢2) is called a confidence interval for the random
variable 𝑋 with confident probability 𝛾 if P(𝑢1 < 𝑋 < 𝑢2) = 𝛾. Put 𝑡 = 3𝜎
into (4.1). Then

P(𝑚− 3𝜎 6 𝑋 6 𝑚 + 3𝜎) = P(|𝑋 −𝑚| 6 3𝜎)

= 1 −P(|𝑋 −𝑚| > 3𝜎) > 1 − 𝜎2

9𝜎2
= 8/9,

and (𝑚 − 3𝜎,𝑚 + 3𝜎) is a confidence interval for 𝑋 of significance level
more than 8/9 = 0.88 . . ., more that 88% observations of 𝑋 belong to
the interval. This is not a tight bound. If 𝑋 has a uniform continu-
ous probability distribution in an interval (𝑎, 𝑏), then 𝑚 = (𝑎 + 𝑏)/2 and
3𝜎 =

√
3(𝑏 − 𝑎)/2 ≈ 0.87(𝑏 − 𝑎), hence 𝑚 − 3𝜎 < 𝑎, 𝑏 < 𝑚 + 3𝜎 and the

event |𝑋 − 𝑚| < 3𝜎 is the certain event. Its probability is 1. Now let
𝑋 have a normal probability distribution with mathematical expectation 𝑎
and variance 𝜎2, then

P(|𝑋 − 𝑎| 6 3𝜎) =

3𝜎∫︁
−3𝜎

1

𝜎
√

2𝜋
𝑒−(𝑢−𝑎)2/2𝜎2

𝑑𝑢

=

3∫︁
−3

1√
2𝜋

𝑒−𝑦2/2 𝑑𝑦 by change of variable 𝑦 = (𝑢− 𝑎)/𝜎

= 0.99730 . . . by numerical integration.

The Chebyshev’s inequality is a convenient tool when exact computation
of the probability is tedious.

Example 29: Estimating the probability of an event. How many
trials are sufficient to estimate the probability 𝑝 of an event 𝐴 with con-
fidence probability 𝛾? The number 𝑋 of occurrences of the event 𝐴 in 𝑛
independent trials has the binomial probability distribution with parame-
ters 𝑛 and 𝑝. We will estimate the unknown probability 𝑝 be means of the
relative frequency 𝑝 = 𝑋/𝑛. Then the goal is to find a value 𝑡 such that

P(|𝑝− 𝑝| 6 𝑡) > 𝛾.

We have

M𝑝 =
1

𝑛
M𝑋 =

𝑛𝑝

𝑛
= 𝑝, var 𝑝 =

1

𝑛2
var𝑋 =

𝑛𝑝(1 − 𝑝)

𝑛2
=

𝑝(1 − 𝑝)

𝑛
,
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and the Chebyshev’s inequality implies that

P(|𝑝− 𝑝| 6 𝑡) > 1 − 𝑝(1 − 𝑝)

𝑡2𝑛
> 1 − 1

4𝑛𝑡2
. (4.2)

So, 𝑛 should be greater than 1/4𝑡2(1 − 𝛾). If, for instance, 𝛾 = 0.95 (95 %)
and 𝑡 = 0.02 then 12 500 trials are sufficient. ���

J. Bernoulli1 in his posthumous book ‘Ars conjectandi’ (1713) formulated
the following statement and gave the first proof to it.

Theorem 12 (Bernoulli’s Law of large numbers). Let 𝑝𝑛 be the relative
frequency of an event 𝐴 in 𝑛 independent repeated trials, then:

lim
𝑛→∞

P(|𝑝𝑛 − 𝑝| 6 𝑡) = 1

for all positive 𝑡.

Informally, any error in estimating the probability can be made as little
probable as desired by choosing a sufficiently large number of trials. The
proof is simple if the Chebyshev’s inequality is at hand. Just send 𝑛 → ∞
in (4.2).

The first generalization of the Bernoulli’s law of large numbers was done
by Poisson.

Theorem 13. Let the probability of the event 𝐴 in the 𝑘-th independent
trial equal 𝑝𝑘, 𝑘 = 1, 2, . . . , and 𝑋𝑛 if the number of occurrences of 𝐴 in
the first 𝑛 trials. Then

lim
𝑛→∞

P(|𝑋/𝑛− (𝑝1 + 𝑝2 + . . . + 𝑝𝑛)/𝑛| 6 𝑡) = 1

for all positive 𝑡.

Poisson’s interpretation of his theorem concerned jury courts. Let the
𝑘-th member of the jury make right decision with probability 𝑝𝑘, then the
proportion of right decisions in a jury with 𝑛 members should be close to
the average probability (𝑝1 + 𝑝2 + . . . + 𝑝𝑛)/𝑛.

Attentive reader should recall the phenomenon of statistical stability
discussed in the first lecture. The theorems of J. Bernoulli and Poisson
look like a mathematical proof of the existence of statistical stability. Such

1Jacob Bernoulli (1655–1705) was a Swiss mathematicians, one of the Bernoullis. Famous
for his contribution to probability theory, calculus, differential equations, and geometry
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conclusion is illusive. We agreed to apply probability theory to random
experiments which behave in a certain way. Thus, the laws of large numbers
should be present in probability theory if the theory has anything to do
with reality, and they can’t make unstable experiments behave differently
just because of a mathematical theory.

The name of the law reminds that the regularity in randomness becomes
visible when the number of trials is large. This being said, the trials don’t
necessity need to be independent. Here we will give one simple but useful
example which is rarely met in probability and statistics coursebooks.

Example 30: Sampling without replacement is representative.
In the quality control example the items were picked for tests without re-
placement. The initial proportion of flawed items being 𝑝 = 𝑚/𝑛, what is
the proportion 𝑝 = 𝑋/𝑘 of flawed items in the sample? Here 𝑋 has a hy-
pergeometric probability with mathematical expectation M𝑋 = 𝑚/𝑛 = 𝑝
and variance var𝑋 = 𝑘𝑚(𝑛 − 𝑚)(𝑛 − 𝑘)/𝑛2(𝑛 − 1). By the Chebyshev’s
inequality,

P(|𝑝− 𝑝| > 𝑡) 6
var (𝑋/𝑘)

𝑡2
=

1

𝑘2
· 𝑘𝑚(𝑛−𝑚)(𝑛− 𝑘)

𝑛2(𝑛− 1)
· 1

𝑡2
.

If 𝑚, 𝑛 grow such that 𝑚/𝑛 → 𝑝 and 𝑘 also grows to infinity then the right-
hand side of the inequality tends to 0, so any significant deviation of the
observed proportion 𝑝 = 𝑋/𝑘 from the actual proportion 𝑝 becomes very
little likely in a sample of large size 𝑘. ���

Now let us recall Example 23 where we had found that the average

𝑋 =
𝑋1 + 𝑋2 + . . . + 𝑋𝑛

𝑛

of independent identically distributed random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛

with normal probability density has in turn the normal probability density
with the mathematical expectation 𝑎 and variance 𝜎2/𝑛. The confidence
probability for 𝑋 and the confidence interval (𝑎− 𝑡, 𝑎 + 𝑡) equals

𝑎+𝑡∫︁
−(𝑎−𝑡)

√
𝑛

𝜎
√

2𝜋
𝑒−𝑛(𝑢−𝑎)2/2𝜎2

𝑑𝑢 =

𝑡
√
𝑛/𝜎∫︁

−𝑡
√
𝑛/𝜎

1√
2𝜋

𝑒−𝑦2/2 𝑑𝑦.

The integral in the right-hand side tends to 1 as 𝑛 → ∞. It means that
the any given error in estimating of the mathematical expectation value
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𝑚 by means of the average 𝑋 of normal random variables can be made
as little probable as desired by choosing a sufficiently large number 𝑛 of
observations (measurements). It was Chebyshev2 who had transferred this
result to a wide class of general random variables.

Definition 11. The law of large numbers holds for random variables 𝑋1,
𝑋2, . . . , 𝑋𝑛, . . . , with finite mathematical expectations 𝑚𝑖 = M𝑋𝑖, 𝑖 = 1,
2, . . . if and only if for all 𝑡 > 0

lim
𝑛→∞

P
(︁⃒⃒⃒ 1

𝑛
(𝑋1 + 𝑋2 + . . . + 𝑋𝑛) − 1

𝑛
(𝑚1 + 𝑚2 + . . . + 𝑚𝑛)

⃒⃒⃒
6 𝑡

)︁
= 1.

Theorem 14 (Chebyshev’s law of large numbers). Let 𝑋1, 𝑋2, . . . , 𝑋𝑛,
. . . be independent random variables with arbitrary probability distributions.
Let the mathematical expectations 𝑚𝑖 = M𝑋𝑖, 𝑖 = 1, 2, . . . exist and let
the variances var𝑋𝑖 = 𝜎2

𝑖 be bounded by a constant 𝐶, 𝜎2
𝑖 < 𝐶, for all

𝑖 = 1, 2, . . . . Then the law of large numbers holds for the random variables
𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . .

Proof. The key to the proof is again the Chebyshev’s inequality. We have

M
(︁ 1

𝑛
(𝑋1 + 𝑋2 + . . . + 𝑋𝑛)

)︁
=

1

𝑛
(𝑚1 + 𝑚2 + . . . + 𝑚𝑛),

var
1

𝑛
(𝑋1 + 𝑋2 + . . . + 𝑋𝑛) =

1

𝑛2
(var𝑋1 + var𝑋2 + . . . + var𝑋𝑛)

=
1

𝑛2
(𝜎2

1 + 𝜎2
2 + . . . + 𝜎2

𝑛)

6
𝑛𝐶

𝑛2
=

𝐶

𝑛
.

By Chebyshev’s inequality,

P
(︁⃒⃒⃒ 1

𝑛
(𝑋1 +𝑋2 + . . .+𝑋𝑛)− 1

𝑛
(𝑚1 +𝑚2 + . . .+𝑚𝑛)

⃒⃒⃒
6 𝑡

)︁
> 1− 𝐶

𝑛𝑡2
→ 1

as 𝑛 → ∞.

Now we are able to extend Example 23 by less restrictive assumptions
that the probability distribution of 𝑋 is not normal but the variance 𝜎2

is finite. The Chebyshev’s law of large numbers states that the average
purchase still stabilizes around the mathematical expectation M𝑋.

2Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician. His fields of in-
terests were probability theory, approximation theory, and mechanics.
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The top generalization of the Chebyshev’s theorem belongs to Khin-
chine3. His theorem releases the requirement on the existence of variances
at a cost of identical distributions.

Theorem 15. If 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . are independent identically dis-
tributed random variables with finite mathematical expectation 𝑚 = M𝑋1

then

lim
𝑛→∞

P(|(𝑋1 + 𝑋2 + . . . + 𝑋𝑛)/𝑛−𝑚| 6 𝑡) = 1 for all 𝑡 > 0.

Example 31: Estimation of moments of a random variable. Let
𝑋 be a random variable. Its moment 𝑚(𝑘) of order 𝑘 is defined as the
mathematical expectation M(𝑋𝑘). If M𝑋𝑘 exists then the sequence of
averages

𝑋𝑘 =
1

𝑛
(𝑋2

1 + 𝑋𝑘
2 + . . . + 𝑋2

𝑛)

follows the law of large numbers, so for practical purposes

1

𝑛
(𝑋2

1 + 𝑋𝑘
2 + . . . + 𝑋2

𝑛) ≈ 𝑚(𝑘).

For example, since var𝑋 = 𝑚(2) − (𝑚(1))2, one could compute 𝑋 and 𝑋2

and use them to get an approximate value of the unknown 𝜎2 = var𝑋.
Recall the groom’s ages example from the first lecture. We don’t know

the values taken on by the random values because the observed values were
grouped into classes. Having intention to estimate the unknown mathemat-
ical expectation and variance we may substitute the middle points of the
classes as ‘typical values’; we also have to omit the cases when the age is
unknown. Then we have 23 919 − 698 = 23 221 observations in 2009, 655
observation gave approximately age 17, 4 786 observations age 22, etc. The
observations in the class “> 60” will be replaced by age 65. The average age
is, then,

(17 · 655 + 22 · 4686 + 27 · 6587 + 32 · 4330 + 37 · 2374 + 42 · 1507

+ 47 · 1086 + 52 · 693 + 57 · 470 + 65 · 733)/23221 = 32.009 ≈ 𝑚(1).

3Aleksandr Yakovlevich Khinchine (1894–1959) was a Soviet mathematician and a Cor-
respondent Member of the Academy of Sciences of the USSR. His areas of research were
probability theory, stochastic processes, real analysis, metric theory of functions, and number
theory.
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The average squared age is

(172 · 655 + 222 · 4686 + 272 · 6587 + 322 · 4330 + 372 · 2374 + 422 · 1507

+ 472 · 1086 + 522 · 693 + 572 · 470 + 652 · 733)/23221 = 1141.135 ≈ 𝑚(2).

So, the unknown variance is

𝜎2 ≈ 141.135 − (32.009)2 = 116.559.

A remark must be made here: the law of large numbers means that much
more possible values of the average of the random variables lie close to the
constant mean value than far from it, and we used experimental data to
get just one of such typical values. But we can’t guarantee that it is one of
such values. A mistake is still possible. ���

If the mathematical expectations don’t exist then the law of large num-
bers becomes inapplicable. Today classical laws of large numbers can be
replaced by more general theorems of the same manner. Although random
variables without mathematical expectation play important role in modern
social sciences they are not covered in this concise course.

Unfortunately, the approach to the estimation of an unknown variance in
the previous Example introduces a systematic error (vanishing with growth
of the number of observations 𝑛), because

M(𝑋)2 ̸= (M𝑋)2.

It is confirmed by the direct calculation:

M(𝑋)2 =
1

𝑛2
M(𝑋1 + 𝑋2 + . . . + 𝑋𝑛)2

=
1

𝑛2
M(𝑋2

1 + 𝑋2
2 + . . . + 𝑋2

𝑛 + 2𝑋1𝑋2 + 2𝑋1𝑋3 + . . . + 2𝑋𝑛−1𝑋𝑛)

=
1

𝑛2
(𝑛𝑚(2) + 𝑛(𝑛− 1)(𝑚(1))2) =

𝑛− 1

𝑛
(𝑚(1))2 +

𝑚(2)

𝑛
.

In statistical parlance, 𝑋2 − (𝑋)2 is called a biased estimator for the vari-
ance. Its bias is

M(𝑋2 − (𝑋)2) − 𝜎2 =
(︁
𝑚(2) − 𝑛− 1

𝑛
𝑚(1) − 1

𝑛
𝑚(2)

)︁
−
(︁
𝑚(2) − (𝑚(1))2

)︁
=

(𝑚(1))2 −𝑚(2)

𝑛
= −𝜎2

𝑛
.
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It’s getting smaller as 𝑛 grow, so the estimator is asymptotically unbiased.
Laws of large numbers describe in some sense the limiting behavior of

sequences of averages. Inspired by the laws of large numbers is a notion of
a limit in probability.

Definition 12. A sequence of random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . is
said to converge in probability to a random variable 𝑋0 if

lim
𝑛→∞

P(|𝑋𝑛 −𝑋0| 6 𝑡) = 1

for all 𝑡 > 0.

Although the law of large numbers assumes a whole sequence 𝑋1, 𝑋2,
. . . is given, its application in data analysis deals with a finite number 𝑛
of observed variables 𝑋1, 𝑋2, . . . , 𝑋𝑛. Here the number 𝑛 is selected such
that the probability P(|𝑋𝑛 −𝑋0| 6 𝑡) > 𝛾 for fixed 𝛾 ≈ 1. The choice of 𝑛
doesn’t forbid realization of the opposite inequality |𝑋𝑚−𝑋0| > 𝑡 for some
larger values 𝑚 > 𝑛 of the index.

A law of large numbers is a particular case of convergence in probability
when 𝑋𝑛 is the average of a sequence of variables and 𝑋0 is a constant.
Convergence in probability of random variables has many important prop-
erties of the ordinary convergence in calculus. We will need further next
statement: if {𝑋𝑛;𝑛 = 1, 2, . . .} converges in probability to a constant 𝑎
and {𝑌𝑛;𝑛 = 1, 2, . . .} converges in probability to a constant 𝑏, and 𝑔(𝑢, 𝑣)
is a continuous function at 𝑢 = 𝑎 and 𝑣 = 𝑏 then {𝑔(𝑋𝑛, 𝑌𝑛);𝑛 = 1, 2, . . .}
converges in probability to 𝑔(𝑎, 𝑏).

Example 32: Estimator 𝑋2 − (𝑋)2 rehabilitated. Despite the es-
timator 𝑋2 − (𝑋)2 of an unknown variance of 𝑋 is biased, we will prove
it converges in probability to the variance, so that the error in estimation
vanishes (strictly speaking, the error converges to zero in probability). Let
𝑔(𝑢, 𝑣) = 𝑢 − 𝑣2, then 𝑔(𝑢, 𝑣) is continuous and 𝑔(𝑚(2),𝑚(1)) = 𝜎2. 𝑋2

converges in probability to 𝑚(2) by the law of large numbers, 𝑋 converges
in probability to 𝑚(1) again by the law of large numbers. So, 𝑋2 − (𝑋)2

does converge in probability to 𝜎2. ���

Example 33: Estimator of warehouse capacity. In Example 28
we assumed that the cumulative distribution function of daily demand is
known. Often this is not the case but one has collected observations for
several years for the largest demand per year. Let 𝑌1, 𝑌2, . . . , 𝑌𝑟 be the
largest daily demands over 𝑟 years. They are random variables with the
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same cumulative distribution function 𝐹𝑛(𝑢) (function 𝐹𝑛(𝑢) was introduced
in Example 28). Let 𝑌1:𝑟, 𝑌2:𝑟, . . . , 𝑌𝑟:𝑟 be the order statistics from the
variables 𝑌1, 𝑌2, . . . , 𝑌𝑟 (see page 51). For 0 < 𝛾 < 1 let [𝛾𝑟] denote the
largest integer less or equal to 𝛾𝑟. The order statistic 𝑌[𝛾𝑟]:𝑟 is called a
sample quantile of level 𝛾. Put 𝛼 = 1 − 𝛾. It turns out, 𝑌[𝛾𝑛]:𝑛 converges
in probability to 𝐶𝛼 as 𝑛 grows if 𝐹𝑛(𝑢) is continuous at 𝑢 = 𝐶𝛼 and if an
equation 𝐹𝑛(𝐶𝛼) = 1−𝛼 has a unique solution. Let us prove this statement.

Let us assume first that 𝑌1, 𝑌2, . . . , 𝑌𝑟 have the uniform probability
distribution in the interval (0, 1). Pick numbers 0 < 𝑢1 < 𝑢2, . . . < 𝑢𝑟 < 1
and small strictly positive numbers 𝛿1, 𝛿2, . . . , 𝛿𝑟. Inequalities

𝑢1 < 𝑌1:𝑟 < 𝑢1 + 𝛿1, 𝑢2 < 𝑌2:𝑟 < 𝑢2 + 𝛿2, . . . , 𝑢𝑟 < 𝑌𝑟:𝑟 < 𝑢𝑟 + 𝛿𝑟

take place in 𝑟! mutually exclusive cases obtainable by permutation of in-
dices: either

𝑢1 < 𝑌1 < 𝑢1 + 𝛿1, 𝑢2 < 𝑌2 < 𝑢2 + 𝛿2, . . . , 𝑢𝑟 < 𝑌𝑟 < 𝑢𝑟 + 𝛿𝑟;

or

𝑢1 < 𝑌2 < 𝑢1 + 𝛿1, 𝑢2 < 𝑌1 < 𝑢2 + 𝛿2, . . . , 𝑢𝑟 < 𝑌𝑟 < 𝑢𝑟 + 𝛿𝑟;

etc. Each favorable case has probability 𝛿1𝛿2 . . . 𝛿𝑟 due to independence and
formula (2.6) in Example 8. Hence the probability

P(𝑢1 < 𝑌1:𝑟 < 𝑢1 + 𝛿1, 𝑢2 < 𝑌2:𝑟 < 𝑢2 + 𝛿2, . . . , 𝑢𝑟 < 𝑌𝑟:𝑟 < 𝑢𝑟 + 𝛿𝑟)

= 𝑟!𝛿1𝛿2 . . . 𝛿𝑟,

the joint probability density of the order statistics 𝑌1:𝑟, 𝑌2:𝑟, . . . , 𝑌𝑟:𝑟 is

𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑟) = 𝑟! for 0 < 𝑢1 < 𝑢2 < . . . < 𝑢𝑟 < 1.

The probability density equals zero when its arguments are not in ascending
order. This probability density coincides with the joint probability density
of ratios 𝑆1/𝑆𝑟+1, 𝑆2/𝑆𝑟+1, . . . , 𝑆𝑟/𝑆𝑟+1 of sums 𝑆1 = 𝑍1, 𝑆2 = 𝑍1 + 𝑍2,
𝑆3 = 𝑍1 + 𝑍2 + 𝑍3, . . . , 𝑆𝑟+1 = 𝑍1 + 𝑍2 + . . . + 𝑍𝑟+1 of independent
exponential random variables with parameter 𝜆 (verify this by generalizing
Theorem 10) and

P(|𝑌[𝛾𝑟]:𝑟 − 𝐶𝛼| 6 𝑡) = P(|𝑆[𝛾𝑟]/𝑆𝑟+1 − 𝐶𝛼| 6 𝑡).
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Now, by the law of large numbers, 𝑆𝑟+1/(𝑟 + 1) and 𝑆[𝛾𝑟]/[𝛾𝑟] converge in
probability to M𝑍1 = 1/𝜆. Hence,

𝑆[𝛾𝑟]

𝑆𝑟+1
=

𝑆[𝛾𝑟]

[𝛾𝑟]
· 𝑟 + 1

𝑆𝑟+1
· [𝛾𝑟]

𝑟 + 1

converges in probability to 𝛾 as 𝑟 → ∞. The cumulative distribution func-
tion of the uniform distribution (0, 1) if 𝐹𝑛(𝑢) = 𝑢 for 0 < 𝑢 < 1. In result,
𝑌[𝛾𝑟]:𝑟 converges in probability to 𝐶𝛼 as 𝑟 → ∞.

Now let 𝐹𝑛(𝑢) be arbitrary continuous cumulative distribution function
and 𝑈1, 𝑈2, . . . , 𝑈𝑟 be independent random variables with uniform dis-
tribution in (0, 1), 𝑈1:𝑟, 𝑈2:𝑟, . . . , 𝑈𝑟:𝑟 the corresponding order statistics.
Let 𝐹−1

𝑛 (𝑢) be the inverse function for 𝐹𝑛(𝑢) and by a direct computation
𝐹−1
𝑛 (𝑈1), 𝐹−1

𝑛 (𝑈2), . . . , 𝐹−1
𝑛 (𝑈𝑛) have the same probability distribution as

𝑌1, 𝑌2, . . . , 𝑌𝑟. Then

P(|𝑌[𝛾𝑟]:𝑟 − 𝐶𝛼| 6 𝑡) = P(|𝐹−1
𝑛 (𝑈[𝛾𝑟]:𝑟) − 𝐹−1

𝑛 (𝛾)| 6 𝑡) → 1 as 𝑟 → ∞

because 𝑈[𝛾𝑟]:𝑟 converges in probability to 𝛾. ���
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Lecture

5
Gaussian law as an approximation.
The central limit theorem

Let study more in-depth the Gaussian1 law of probability distribution
with a probability density

𝑝(𝑢) =
1

𝜎
√

2𝜋
𝑒−(𝑢−𝑎)2/2𝜎2

. (5.1)

The probability to fall into an interval (𝑢1, 𝑢2) is given by the integral

𝑢2∫︁
𝑢1

1

𝜎
√

2𝜋
𝑒−(𝑢−𝑎)2/2𝜎2

𝑑𝑢

which can’t be expressed in terms of elementary functions in finite way
(although infinite series expansions are used to evaluate it numerically). So
the very first fact to learn about the family of Gaussian densities is that
by the change of a variable 𝑣 = (𝑢− 𝑎)/𝜎 computations are reduced to the
standard normal density with the parameters 𝑎 = 0 and 𝜎 = 1. Precisely,
for any 𝑢1 and 𝑢2 > 𝑢1 we have

𝑢2∫︁
𝑢1

1

𝜎
√

2𝜋
𝑒−(𝑢−𝑎)2/2𝜎2

𝑑𝑢 =

(𝑢2−𝑎)/𝜎∫︁
(𝑢1−𝑎)/𝜎

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣.

Recalling the Newton–Leibnitz formula of definite integration one may write

(𝑢2−𝑎)/𝜎∫︁
(𝑢1−𝑎)/𝜎

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣 = 𝐹
(︁𝑢2 − 𝑎

𝜎

)︁
− 𝐹

(︁𝑢1 − 𝑎

𝜎

)︁
1Karl Friedrich Gauß (1777–1855) was a German mathematician, whose impact on math-

ematics and whose contribution to number theory, algebra, analysis, statistics, differential
geometry, celestial mechanics, geodesy, etc delivered him a title of Princeps mathematicorum
(Latin: the Prince of mathematicians).
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where 𝐹 (𝑢) is any of the antiderivatives of the standard normal density
𝑒−𝑢2/2/

√
2𝜋. The common choices of the antiderivative are

𝐹 (𝑢) = Φ(𝑢) =

𝑢∫︁
−∞

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣,

𝐹 (𝑢) = Φ0(𝑢) =

𝑢∫︁
0

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣,

𝐹 (𝑢) =
1

2
Erf

(︁ 𝑢√
2

)︁
where Erf(𝑢) is the error function

Erf (𝑢) =
2√
𝜋

𝑢∫︁
0

𝑒−𝑣2

𝑑𝑣.

The function Φ(𝑢) is the cumulative distribution function for the standard
normal density. It is has the following features:

Φ(−∞) = 0, Φ(∞) = 1, Φ(0) = 0.5, Φ(−𝑢) = 1 − Φ(𝑢).

The function Φ0(𝑢) represents the probability assigned in accordance with
the standard normal density to the interval (0, 𝑢). Moreover,

Φ(𝑢) = 0.5 + Φ(𝑢), Φ0(0) = 0, Φ0(𝑢) = 0.5, Φ0(−𝑢) = Φ0(𝑢).

The functions Φ(𝑢), Φ0(𝑢) were tabulated and the tables can be found in
many manuals (see page 107). So, if 𝑋 has a normal probability distribution
with the density (5.1) then

P(𝑢 < 𝑋 < 𝑣) = Φ
(︁𝑢− 𝑎

𝜎

)︁
− Φ

(︁𝑢− 𝑎

𝜎

)︁
= Φ0

(︁𝑢− 𝑎

𝜎

)︁
− Φ0

(︁𝑢− 𝑎

𝜎

)︁
.

Often we will be interested in confidence interval (−𝑧, 𝑧) for the standard
normal random variable symmetric about zero. Let us demonstrate the pro-
cedure for the confidence probability of 0.9. We’d like to solve the equation

𝑧∫︁
−𝑧

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣 = 0.9
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for positive 𝑧. The left-hand side is

Φ0(𝑧) − Φ0(−𝑧) = 2Φ0(𝑧),

so we have Φ0(𝑧) = 0.45. From Table 3, 𝑧 ≈ 1.65.
Figure 5.1 shows some frequently used intervals.

−1.96 1.96

−1.65 1.65

−0.675 0.675

𝑢

𝑝(𝑢)

−3 −2 −1 0 1 2 3

0.5

Figure 5.1. Symmetric confidence intervals for standard normal density: 50 %
(brown), 90 % (light blue), 95 % (light green), 99.7 % (pink)

People know from practice that measurements usually are subject to
errors. Mathematically, when someone is measuring a quantity 𝑚 (e.g. a
distance, an angle in geodesy, a weight, etc) he actually gets a number

𝑌 = 𝑚 + 𝑋,

where 𝑋 is the error term. They observed that smaller errors occur more
frequently than larger ones, that positive and negative errors of same mag-
nitude are equally likely. So, 𝑋 must have a symmetric probability distribu-
tion around 0 and its ‘mean value’ should be 0 as well. Different probability
densities have been proposed for error terms (see Fig. 5). Gauss argued for
his normal density because he had a kind of a proof for this formula from
postulates he came up with. His main requirement was that the average of
independent measurements 𝑌1, 𝑌2, . . . should be ‘the most probable’ value
for the unknown value of 𝑚.

Interestingly, the probability density named after him was known to
mathematicians before Gauss. It first appeared as an approximation for the
binomial probabilities in work of de Moivre2.

2Abraham de Moivre (1667–1754) was a French mathematician. A Huguenot exiled to
England, he was a friend of Isaac Newton, Edmond Halley, and James Stirling. Most famous
for his work on probability theory and complex numbers.
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𝑢

𝑝(𝑢)

0

Figure 5.2. Different historical probability densities for errors: Gaussian density
𝑒−𝑢2/2𝜎2

/𝜎
√
2𝜋 (blue), two-sided Laplace’s density 2𝑒−𝜆·|𝑢|/𝜆 (brown), Cauchy’s

density 1/(𝜋(1 + 𝑢2)) (red)

Theorem 16 (The local theorem of de Moivre – Laplace). For a binomial
probability distribution with parameters 𝑛 and 𝑝 and

𝑏(𝑘;𝑛, 𝑝) =

(︂
𝑛

𝑘

)︂
𝑝𝑘𝑞𝑛−𝑘, 𝑞 = 1 − 𝑝, 𝑘 = 0, 1, . . . , 𝑛

we have
𝑏(𝑘;𝑛, 𝑝)
1

√
𝑛𝑝𝑞

𝜙(𝑥𝑘)
→ 1 as 𝑘, 𝑛 → ∞

where
𝜙(𝑥) =

1√
2𝜋

𝑒−𝑥2/2 and 𝑥𝑘 =
𝑘 − 𝑛𝑝
√
𝑛𝑝𝑞

.

The proof to the theorem relies on the Stirling’s approximate formula
for the factorial function

𝑛! ∼
√

2𝜋𝑛𝑛𝑛𝑒𝑛

and consists in direct computation of the limit.
Of course, the limit form of the theorem should be understood as follows:

if 𝑛 is large enough and 𝑝 fixed, then the binomial probability 𝑏(𝑘;𝑛, 𝑝) is
approximately

1
√
𝑛𝑝𝑞

𝜙(𝑥𝑘). (5.2)
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Table 5.1. Binomial probabilities approximated by local de Moivre – Laplace
theorem for 𝑝 = 0.2 and 𝑛 = 4

𝑘 𝑥𝑘 𝑏(𝑘;𝑛, 𝑝)
√︀
𝑛𝑝(1 − 𝑝)𝑏(𝑘;𝑛, 𝑝) 𝜙(𝑥𝑘)

0 −1.0000 0.4096 0.3277 0.2420
1 0.2500 0.4096 0.3277 0.3867
2 1.5000 0.1536 0.1229 0.1295
3 2.7500 0.0256 0.0205 0.0091
4 4.0000 0.0016 0.0013 0.0001

The quality of approximation can be seen from Tables 5.1 and 5.2. ‘Large’
values of 𝑛 are not really large.

Example 34: A telephone survey. In a telephone survey people
chosen at random are called to be questioned. The probability a person
refuses to answer to questions is 0.2. What is the probability 400 out of 500
agree to respond? Here 𝑞 = 0.2, 𝑝 = 0.8, 𝑛 = 500, 𝑛𝑝 = 400, 𝑛𝑝𝑞 = 80,√
𝑛𝑝𝑞 = 4

√
5 ≈ 8.94, 𝑘 = 400, 𝑥400 = (400 − 400)/4

√
5 = 0, and

1
√
𝑛𝑝𝑞

𝜙(𝑥400) = 0.044603 . . . .

The exact value of the probability of 400 successes is

500!

400!100!
(0.8)400(0.2)100 = 0.044564 . . .

The error is 0.000039 which is 0.088 % of the true probability. But the
number of arithmetic operations needs to calculate the answer from (5.2) is
much smaller! ���

From the local de Moivre – Laplace theorem we find that the probability
of exactly [𝑛𝑝] successes approximately

1√
2𝜋𝑛𝑝𝑞

.

It vanishes as 𝑛 → ∞. It looks paradoxically that the probability of the
mean value tends to zero, but it can easily resolved: the number of pos-
sible success counts becomes larger and larger, so each single probability
necessarily diminishes.

Often the sum of binomial probabilities is needed. Let 𝑎, 𝑏 be fixed
numbers. Put ∆ = (

√
𝑛𝑝𝑞)−1. If we substitute ∆ · 𝜙(𝑥𝑘) into a sum

𝑏(𝑎;𝑛, 𝑝) + 𝑏(𝑎 + 1;𝑛, 𝑝) + . . . + 𝑏(𝑏;𝑛, 𝑝),

66



Table 5.2. Binomial probabilities approximated by the local de Moivre – Laplace
theorem for 𝑝 = 0.2 and 𝑛 = 4

𝑘 𝑥𝑘 𝑏(𝑘;𝑛, 𝑝)
√︀

𝑛𝑝(1 − 𝑝)𝑏(𝑘;𝑛, 𝑝) 𝜙(𝑥𝑘)
0 −2.5000 0.0038 0.0076 0.0175
1 −2.0000 0.0236 0.0472 0.0540
2 −1.5000 0.0708 0.1417 0.1295
3 −1.0000 0.1358 0.2715 0.2420
4 −0.5000 0.1867 0.3734 0.3521
5 0.0000 0.1960 0.3920 0.3989
6 0.5000 0.1633 0.3267 0.3521
7 1.0000 0.1108 0.2217 0.2420
8 1.5000 0.0623 0.1247 0.1295
9 2.0000 0.0294 0.0589 0.0540
10 2.5000 0.0118 0.0236 0.0175
11 3.0000 0.0040 0.0080 0.0044
12 3.5000 0.0012 0.0023 0.0009
13 4.0000 0.0003 0.0006 0.0001
14 4.5000 0.0001 0.0001 0.00002
15 5.0000 0.00001 0.00002 0.00000

we obtain an integral sum
𝑏∑︁

𝑘=𝑎

∆ · 𝜙(𝑥𝑘)

for the definite integral
𝑐2∫︁

𝑐1

𝜙(𝑢) 𝑑𝑢, 𝑐1 =
𝑎− 𝑛𝑝√︀
𝑛𝑝(1 − 𝑝)

, 𝑐2 =
𝑏− 𝑛𝑝√︀
𝑛𝑝(1 − 𝑝)

.

This leads to the famous de Moivre – Laplace result.

Theorem 17 (Integral theorem of de Moivre – Laplace). As 𝑛 → ∞

𝑏∑︁
𝑘=𝑎

𝑏(𝑘;𝑛, 𝑝) →
𝑐2∫︁

𝑐1

𝜙(𝑢) 𝑑𝑢

where
𝑐1 =

𝑎− 𝑛𝑝√︀
𝑛𝑝(1 − 𝑝)

, 𝑐2 =
𝑏− 𝑛𝑝√︀
𝑛𝑝(1 − 𝑝)

.
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Example 35: Estimating the probability of an event. This ex-
ample continues Example 29. Using the Integral theorem of de Moivre –
Laplace, inequality (4.2) can be changed into the equality

P(|𝑝− 𝑝| 6 𝑡) = P(𝑛𝑝− 𝑡𝑛 < 𝑋 < 𝑛𝑝 + 𝑛𝑡) ≈ 2Φ0

(︁
𝑡

√︂
𝑛

𝑝𝑞

)︁
> 2Φ0(2𝑡

√
𝑛).

For 𝛾 = 0.95 and 𝑡 = 0.02 we have

Φ0(0.04
√
𝑛) > 0.475

and
0.04

√
𝑛 > 1.96, 𝑛 = 2402.

We see that a more accurate estimation of the probability makes a sufficient
number of experiments five times smaller. ���

Example 36: A cloakroom capacity problem. A movie theatre
is planned to have two cloakrooms of equal capacity. Assuming there are
1000 seats in the theatre and every person chooses between the cloakrooms
independently of the others and equiprobably, what capacity should it be
so that one of them overflows in no more than 5 % of cases?

Let us denote by 𝑁 the capacity of one cloakroom. Let 𝑋 denote the
number of people choosing the first cloakroom. Then there’s no overflow
when

𝑋 6 𝑁, 1000 −𝑋 6 𝑁

whence
1000 −𝑁 6 𝑋 6 𝑁.

We have Bernoulli trials with 𝑛 = 1000 and 𝑝 = 1/2. By virtue of the
Integral De Moivre—Laplace theorem the probability of this event is

Φ0((𝑁 − 𝑛𝑝)/
√
𝑛𝑝𝑞) − Φ0((1000 −𝑁 − 𝑛𝑝)/

√
𝑛𝑝𝑞)

= Φ0((𝑁 − 500)/5
√

10) − Φ0((500 −𝑁)/5
√

10).

Obviously, 𝑁 > 500, so 𝑁 − 500 > 0 and 500 − 𝑁 6 0. Thus, the desired
probability is

2Φ0((𝑁 − 500)/5
√

10) > 0.95.

From the table,
𝑁 − 500

5
√

10
> 1.96
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and 𝑁 > 530.99, so 𝑁 = 531. ���

Example 37: Testing a hypothesis on the probability of an
event. Let us continue Example 17. Since 𝑋 has a binomial probability
distribution with parameters 𝑛 and 𝑝, the 𝜒2-statistic has a probability
distribution approximately as a squared standard normal variable, i.e. a
𝜒2-distribution with one degree of freedom. The Bernoulli’s Law of large
numbers tells us that typical values of 𝜒2 should be small. It means that
large values of the 𝜒2-statistic give evidence against the hypothesized value
𝑝. For instance, 95 % observations of a random variable with 𝜒2-distribution
with 1 degree of freedom lie in a interval between 0.0 and 3.841. ���

The Integral theorem of de Moivre and Laplace was the source of re-
search efforts aimed to understand condition when the Gaussian probability
distribution arise. Let us cite just a few later results in this direction.

Theorem 18 (Central limit theorem for independent identically distributed
random variables). Let 𝑋1, 𝑋2, . . . be independent identically distributed
random variables with finite expectation 𝑚 = M𝑋1 and variance 𝜎2 =
var𝑋1. Then for any 𝑢1 < 𝑢2

lim
𝑛→∞

P
(︁
𝑢1 <

𝑋1 + 𝑋2 + . . . + 𝑋𝑛 − 𝑛𝑚

𝜎
√
𝑛

< 𝑢2

)︁
= Φ(𝑢2) − Φ(𝑢1).

Recall that Φ(𝑥) is the cumulative distribution function of the standard
normal distribution. Then Theorem 18 can be stated as follows: under the
above-mentioned hypotheses the ratio

𝑆𝑛 − 𝑛M𝑋1√
var𝑆𝑛

with 𝑆𝑛 = 𝑋1 + 𝑋2 + . . . + 𝑋𝑛

has a probability distribution close to the standard normal distribution when
𝑛 is large.

In Lecture 2 we saw that a random variable 𝑋𝑛 with a binomial prob-
ability distribution came to out attention as the number of successes in 𝑛
independent experiments. Denoting by 𝑌𝑘 the number of successes in 𝑘-th
trial (0 or 1) we have 𝑋𝑛 = 𝑌1 + 𝑌2 + . . . + 𝑌𝑛, M𝑌𝑘 = 𝑝, var𝑌𝑘 = 𝑝𝑞 and
variables 𝑌1, 𝑌2, . . . , 𝑌𝑛 are independent. Then the theorem of de Moivre
and Laplace is a particular case of Theorem 18.

Theorem 18 plays important role in probability theory and mathematical
statistics as well as in wide applications in technical and social sciences.
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Example 38: Measurement errors. Consider a physical measure-
ments with an error uniformly distributed in (−1, 1) in some convenient
units. If we have 𝑛 measurements, what is the probability that the average
value deviates from the true value by less than given limit 𝛿 > 0?

Let
𝑋𝑗 = 𝑚 + 𝑌𝑗 ,

where 𝑋𝑗 is the result of the 𝑗-th measurements, 𝑚 the true value, 𝑌𝑗 the
error, −1 < 𝑌𝑗 < 1. Then

M𝑌𝑗 =

1∫︁
−1

𝑢

2
𝑑𝑢 = 0, var𝑌𝑗 = M𝑌 2

𝑗 =

1∫︁
−1

𝑢2

2
𝑑𝑢 =

1

3
,

the average value from 𝑛 measurements is

𝑋 =
𝑋1 + 𝑋2 + . . . + 𝑋𝑛

𝑛
=

𝑚𝑛 + 𝑌1 + 𝑌2 + . . . + 𝑌𝑛

𝑛
=

= 𝑚 +
𝑌1 + 𝑌2 + . . . + 𝑌𝑛

𝑛
.

By virtue of Theorem 18 we get

P(|𝑋 −𝑚| < 𝛿) = P
(︁⃒⃒⃒
𝑚 +

𝑌1 + 𝑌2 + . . . + 𝑌𝑛

𝑛
−𝑚

⃒⃒⃒
< 𝛿

)︁
= P

(︁
−𝛿 <

𝑌1 + 𝑌2 + . . . + 𝑌𝑛

𝑛
< 𝛿

)︁
= P

(︁
−𝛿

√
3𝑛 <

𝑌1 + 𝑌2 + . . . + 𝑌𝑛√︀
𝑛/3

< 𝛿
√

3𝑛
)︁

≈ Φ0(𝛿
√

3𝑛) − Φ0(−𝛿
√

3𝑛) = 2Φ0(𝛿
√

3𝑛).

If, for instance, 𝑛 = 25 and 𝛿 = 0.2 then 2Φ0(𝛿
√

3𝑛) ≈ 0.92. ���

Example 39: Asymptotic normality of sample moments. Let 𝑋1,
𝑋2, . . . are independent identically distributed random variables. If 𝑚(𝑘) =
M(𝑋𝑘

1 ) and 𝑚(2𝑘) = M(𝑋2𝑘
1 ) exist then var (𝑋𝑘

1 ) = M(𝑋2𝑘) − (M𝑋𝑘
1 )2

and
𝑋𝑘 −𝑚(2𝑘)√︀

(𝑚(2𝑘) − (𝑚(𝑘))2)𝑛

is asymptotically normal. ���
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Yet the power of asymptotic analysis of distributions of sums of a large
number of random variables is collected in a theorem which doesn’t assume
identical distribution of terms. Such a theorem can be applied in many
situations when a total of relatively small contributions of different nature
make a total quantity with a normal probability distribution. In practice
we will apply such a theorem when only mathematical expectations and
variances of the small terms are known and not the complete probability
distributions. We approximate the probability distribution for the sum by
adjusting the mathematical distribution and variance for the sum only.

Theorem 19 (Lindeberg). Let 𝑋1, 𝑋2, . . . be independent random vari-
ables with mathematical expectations 𝑚1 = M𝑋1, 𝑚2 = M𝑋2, . . . , vari-
ances 𝜎2

1 = var𝑋1, 𝜎2
2 = var𝑋2, . . . and let 𝐵2

𝑛 = 𝜎2
1 + 𝜎2

2 + . . . + 𝜎2 =
var (𝑋1 + 𝑋2 + . . . + 𝑋𝑛). If, moreover, for all constant 𝜏 > 0 we have

lim
𝑛→∞

1

𝐵2
𝑛

𝑛∑︁
𝑘=1

M((𝑋𝑘 −𝑚𝑘)2 · 𝑌𝑘(𝜏)) = 0

where

𝑌𝑘(𝜏) =

{︃
1 if |𝑋𝑘 −𝑚𝑘| > 𝜏𝐵𝑘

0 otherwise

then as 𝑛 → ∞ uniformly in 𝑢

P
(︁ 1

𝐵𝑛

𝑛∑︁
𝑘=1

(𝑋𝑘 −𝑚𝑘) < 𝑢
)︁
→

𝑢∫︁
−∞

1√
2𝜋

𝑒−𝑣2/2 𝑑𝑣.

The meaning of the Lindeberg’s theorem is that

(𝑋1 −𝑚1) + (𝑋2 −𝑚2) + . . . + (𝑋𝑛 −𝑚𝑛)

𝐵𝑛

has approximately the standard normal probability distribution.

Example 40: Stock pricing model. Let us look again at a financial
market of Example 12. Assume that the returns 𝑅1, 𝑅2, . . . , 𝑅𝑡, . . . over
several days are independent random variables. The price on day 𝑡 is

𝑆𝑡 = 𝑆0 ·𝑅1 · 𝑆2 × . . .× 𝑆𝑡.

The logarithm of the price is the sum of logarithms of the returns:

ln𝑆𝑡 = ln𝑆0 + ln𝑅1 + ln𝑆2 + . . . + ln𝑆𝑡.
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If mathematical expectations 𝑚1 = M ln𝑅1, 𝑚2M ln𝑅2, . . . and vari-
ances 𝜎2

1 = var ln𝑅1, 𝜎2
2 = var ln𝑅2, . . . are known then the probability

distribution of ln𝑆𝑡 should be approximately normal with mathematical ex-
pectation 𝑚 = 𝑚1 + 𝑚2 + . . . + 𝑚𝑡 and variance 𝜎2 = 𝜎2

1 + 𝜎2
2 + . . . + 𝜎2

𝑡 .
The probability distribution of the price 𝑆𝑡 is called log-normal and has a
probability density

𝑝(𝑢) =
1

𝑢𝜎
√

2𝜋
𝑒−(ln𝑢−𝑚)2/2𝜎2

, 𝑢 > 0.

���

Example 41: “Revealing the mysteries of his technique”. One
shouldn’t believe that the Gaussian probability distribution is a universal
approximation tool, not even in case of summation. Here is an example
proposed by S.D. Poisson (see the footnote on p. 23). Let 𝑋1, 𝑋2, . . . , 𝑋𝑛

be independent random variables with identical probability density of

𝑝(𝑢) =
1

𝜋(1 + 𝑢2)
.

One is encouraged to verify by means of formula (3.10) that 𝑋1 +𝑋2 has a
probability density

𝑝2(𝑢) =
2

𝜋(4 + 𝑢2)
,

𝑋1 + 𝑋2 + 𝑋3 has a probability density

𝑝3(𝑢) =
3

𝜋(9 + 𝑢2)
,

and, generally, 𝑋1 + 𝑋2 + . . . + 𝑋𝑛 has a probability density

𝑝𝑛(𝑢) =
𝑛

𝜋(𝑛2 + 𝑢2)
.

Then by virtue of formula (3.5), the average of 𝑛 values

𝑋1 + 𝑋2 + . . . + 𝑋𝑛

𝑛

has the same probability density 𝑝(𝑢) as every single term 𝑋1, 𝑋2, . . . .
Therefore, if the errors are distributed according to the density 𝑝(𝑢) then
averaging doesn’t reduce the total error. ���

There is a branch of studies in probability theory which investigates
what limiting probability distortions may ever exist.
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Lecture

6 Markov chains

A large number of working models in technical and social sciences are
so-called Markov models. Imagine a process evolving in some state space
in ways that its future after any time 𝑡 depends (statistically) only on the
process state at time 𝑡 but not on the past before time 𝑡. In physics this
property characterizes dynamic systems whose future is determined by the
present but not by the past. Using a more high-end mathematics one can
convert many processes into Markov ones by selection of an extended state
space. Let us assume that the time is discrete, the discrete time variable is
𝑛 = 0, 1, . . . , the state space is discrete (either finite or infinite denumer-
able). Denote by 𝑋𝑛 the process state at time 𝑛.

Definition 13. A sequence 𝑋0, 𝑋1, . . . , 𝑋𝑛, . . . of discrete random vari-
ables is called a Markov chain1 if for all values 𝑎0, 𝑎1, . . . , 𝑎𝑛 such that

P(𝑋0 = 𝑎0, 𝑋1 = 𝑎1, . . . , 𝑋𝑛−1 = 𝑎𝑛−1) > 0

one has

P(𝑋𝑛 = 𝑎𝑛|𝑋0 = 𝑎0, 𝑋1 = 𝑎1, . . . , 𝑋𝑛−1 = 𝑎𝑛−1)

= P(𝑋𝑛 = 𝑎𝑛|𝑋𝑛−1 = 𝑎𝑛−1). (6.1)

Equality (6.1) is called the Markov property . Denote

𝑝𝑛(𝑎, 𝑎′) = P(𝑋𝑛 = 𝑎′|𝑋𝑛−1 = 𝑎).

If functions 𝑝𝑛(𝑎, 𝑎′) = 𝑝(𝑎, 𝑎′) are independent of 𝑛 the Markov chain is
called homogeneous (time-homogeneous). Then 𝑝(𝑎, 𝑎′) is called the (one-
step) transition probability of the Markov chain. The Markov property
means exactly that the ‘past’ of the process up to time 𝑛 affects its ‘future’
only through the ‘present’. The probability distribution 𝑝0(𝑎) = P(𝑋0 = 𝑎)
is called the initial probability distribution of the Markov chain. For the

1Andrĕı Andreevich Markov (1856–1922) was a Russian mathematician and a Member of
Russian Imperial Academy of Sciences. He is famous for his works in probability theory,
mathematical analysis, and number theory.
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sake of simplicity we shall assume that the possible values of the random
variables 𝑋𝑛 are non-negative integers 0, 1, . . . for all 𝑛 = 0, 1, . . . , possibly
not greater than some integer constant 𝑀 . If there’s no such constant,
put 𝑀 = ∞. If 𝑀 < ∞ the Markov chain is called finite, otherwise it
is called denumerable (or countable). The Markov property (6.1) is the
simplest type of statistical dependence next to pure independence: recalling
the multiplication formula for probabilities (1.8) for several events we get

P(𝑋0 = 𝑎0, 𝑋1 = 𝑎1, . . . , 𝑋𝑛 = 𝑎𝑛)

= P(𝑋0 = 𝑎0) ×P(𝑋1 = 𝑎1|𝑋0 = 𝑎0) ×P(𝑋2 = 𝑎2|𝑋0 = 𝑎0, 𝑋1 = 𝑎1)×
. . .×P(𝑋𝑛 = 𝑎𝑛|𝑋0 = 𝑎0, 𝑋1 = 𝑎1, . . . , 𝑋𝑛−1 = 𝑎𝑛−1)

= 𝑝0(𝑎0)𝑝1(𝑎0, 𝑎1)𝑝2(𝑎2, 𝑎1) · · · 𝑝𝑛(𝑎𝑛−1, 𝑎𝑛).

This result also means that to define a time-homogeneous Markov chain
with 𝑀 states {𝑢1, 𝑢2, . . .} we need an initial probability distribution

𝑝0(𝑢𝑘) > 0, 1 6 𝑘 6𝑀,

𝑀∑︁
𝑘=1

𝑝0(𝑢𝑘) = 1

and a matrix of transition probabilities

𝑃 =

⎛⎜⎜⎜⎝
𝑝(𝑢1, 𝑢1) 𝑝(𝑢1, 𝑢2) . . . , 𝑝(𝑢1, 𝑢𝑀 )
𝑝(𝑢2, 𝑢1) 𝑝(𝑢2, 𝑢2) . . . , 𝑝(𝑢2, 𝑢𝑀 )

...
...

. . .
...

𝑝(𝑢𝑀 , 𝑢1) 𝑝(𝑢𝑀 , 𝑢2) . . . , 𝑝(𝑢𝑀 , 𝑢𝑀 )

⎞⎟⎟⎟⎠ ,

𝑀∑︁
𝑘=1

𝑝(𝑢𝑗 , 𝑢𝑘) = 1, 𝑗 = 1, 2, . . . ,𝑀.

The matrix is infinite if 𝑀 = ∞ and there is no last column or last row in
it. In this lecture we will deal only with time-homogeneous Markov chains.

Denote by

𝑝(𝑛; 𝑎1, 𝑎2) = P(𝑋𝑛 = 𝑎2|𝑋0 = 𝑎1)

= P(𝑋𝑛+𝑚 = 𝑎2|𝑋𝑚 = 𝑎1), 𝑚 = 1, 2, . . .

the probability of a transition from state 𝑎1 to state 𝑎2 in 𝑛 steps, and

𝑝(𝑛; 𝑎) = P(𝑋𝑛 = 𝑎)
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for the probability if finding the process at state 𝑎 at time 𝑛. Also, let us
introduce a square matrix

𝑃 (𝑛) = (𝑝(𝑛;𝑢𝑗 , 𝑢𝑘) : 1 6 𝑗, 𝑘 6𝑀)

and a row-vector
Π(𝑛) = (𝑝(𝑛;𝑢𝑗) : 1 6 𝑗 6𝑀).

As the following theorem demonstrates, these probabilities can be found
fast by means of matrix algebra.

Theorem 20 (Kolmogorov–Chapman equations). The following equation
holds:

𝑝(𝑚 + 𝑛;𝑢𝑗 , 𝑢𝑘) =

𝑀∑︁
𝑙=1

𝑝(𝑚;𝑢𝑗 , 𝑢𝑙)𝑝(𝑛;𝑢𝑙, 𝑢𝑘), (6.2)

or, in a matrix form,

𝑃 (𝑚+𝑛) = 𝑃 (𝑚) · 𝑃 (𝑛). (6.3)

Since 𝑃 (1) = 𝑃 , we have 𝑃 (𝑛) = 𝑃𝑛. Furthermore,

Π(𝑚+𝑛) = Π(𝑚) · 𝑃 (𝑛).

Proof. Simply, (6.2) follows from the law of total probability and the mul-
tiplication theorem:

𝑝(𝑚 + 𝑛;𝑢𝑗 , 𝑢𝑘) = P(𝑋𝑚+𝑛 = 𝑢𝑘 | 𝑋0 = 𝑢𝑗)

=

𝑀∑︁
𝑙=1

P(𝑋𝑚+𝑛 = 𝑢𝑗 , 𝑋𝑚 = 𝑢𝑙 | 𝑋0 = 𝑢𝑗) by (1.2)

=

𝑀∑︁
𝑙=1

P(𝑋𝑚 = 𝑢𝑙 | 𝑋0 = 𝑢𝑗)

×P(𝑋𝑚+𝑛 = 𝑢𝑘 | 𝑋0 = 𝑢𝑗 , 𝑋𝑚 = 𝑢𝑙) by (1.7)

=

𝑀∑︁
𝑙=1

P(𝑋𝑚 = 𝑢𝑙 | 𝑋0 = 𝑢𝑗)

×P(𝑋𝑚+𝑛 = 𝑢𝑘 | 𝑋𝑚 = 𝑢𝑙) by (6.1)

=

𝑀∑︁
𝑙=1

𝑝(𝑚;𝑢𝑗 , 𝑢𝑙)𝑝(𝑛;𝑢𝑙, 𝑢𝑘).
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The rest is about notation. Notice that (1.2) can be used when 𝑀 is finite.
Otherwise, more assumptions should be posed on probability P(·), such as
(1.2) holding true for a denumerable set of mutually exclusive events.

In one important case the matrices 𝑃𝑛 become little varying for suffi-
ciently large 𝑛. Then the row vector Π𝑛 of probabilities can be evaluated
approximately much quicker. We need one more definition to formulate the
corresponding result.

Definition 14. Non-negative real numbers 𝜋𝑗, 𝑘 = 1, . . . , 𝑀 are called a
stationary probability distribution for the Markov chain {𝑋𝑛;𝑛 = 0, 1, . . .}
when

𝜋𝑗 =

𝑀∑︁
𝑘=1

𝜋𝑘𝑝(𝑢𝑘, 𝑢𝑗), 𝑗 = 1, 2, . . . ,𝑀 ;

𝑀∑︁
𝑗=1

𝜋𝑗 = 1. (6.4)

If all 𝜋𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑀 then the stationary probability distribution
is called ergodic.

The rationale for the name is as follows. Let us take the stationary
probability distribution in place of the initial probability distribution for
𝑋0, then

𝑝(2; 𝑎) = P(𝑋2 = 𝑎) =

𝑀∑︁
𝑘=1

𝑝(1;𝑢𝑘)𝑝(𝑢𝑘, 𝑎) = 𝜋𝑗 ,

and, in general, 𝑝(𝑛;𝑢𝑗) = 𝜋𝑗 and

P(𝑋𝑚 = 𝑢𝑗 , 𝑋𝑚+1 = 𝑎1, . . . , 𝑋𝑚+𝑛 = 𝑎𝑛)

= 𝜋𝑗𝑝(𝑢𝑗 , 𝑎1), 𝑝(𝑎2, 𝑎2) × . . .× 𝑝(𝑎𝑚+𝑛−1, 𝑎𝑚+𝑛).

Theorem 21. If 𝑀 < ∞ and some power matrix 𝑃𝑛, 𝑛 > 1 of the matrix
𝑃 has all positive entries, then an unique ergodic distribution exists and

lim
𝑛→∞

𝑝(𝑛;𝑢𝑗 , 𝑢𝑘) = 𝜋𝑘, 𝑗 = 1, 2, . . . ,𝑀. (6.5)

Even if the ergodic stationary probability distribution is not the initial
probability distribution of the Markov chain, we can get an understanding
of it from a frequentist’s viewpoint. First, let us extend our toolset with
conditional mathematical expectations. Let 𝑌 be a discrete random vari-
ables with possible values 𝑣1, 𝑣2, . . . . A conditional probability of an event
𝐴 given 𝑌 = 𝑣 is, obviously,

P(𝐴 | 𝑌 = 𝑣) =
P(𝐴 ∩ {𝑌 = 𝑣})

P(𝑌 = 𝑣)
. (6.6)
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If 𝑋 is another discrete random variable with possible values 𝑢1, 𝑢2, . . . ,
then probabilities

P(𝑋 = 𝑢 | 𝑌 = 𝑣) =
P(𝑋 = 𝑢, 𝑌 = 𝑣)

P(𝑌 = 𝑣)
by (6.6)

define the conditional probability distribution of 𝑋 given 𝑌 = 𝑣. We can
also define a suitable conditional mathematical expectation

M(𝑋 | 𝑌 = 𝑣) =
∑︁
𝑘

𝑢𝑘P(𝑋 = 𝑢𝑘 | 𝑌 = 𝑣).

Let 𝐴 be a subset of state space of a Markov chain 𝑋0, 𝑋1, . . . , 𝑋𝑛,
. . . . Let 𝐼𝑛 = 1 if 𝑋𝑛 ∈ 𝐴 and 𝐼𝑛 = 0 otherwise. Here, finding the chain in
a state from 𝐴 is considered as a success and 𝐼𝑛 represents the number of
successes at time 𝑛. Consider

𝜈𝐴(𝑛) =
𝐼1 + 𝐼2 + . . . + 𝐼𝑛

𝑛

which is the fraction of the time spent by the physical system in the set 𝐴.
It can also be considered as the relative frequency of visiting the set 𝐴. By
the definition of the conditional mathematical expectation,

M(𝐼𝑡 | 𝑋0 = 𝑎) = P(𝑋𝑡 ∈ 𝐴 | 𝑋1 = 𝑗) =

𝑀∑︁
𝑗=1

𝑝(𝑛; 𝑎, 𝑢𝑗).

Let us denote the right-hand side of the expression above by 𝑝(𝑛; 𝑎,𝐴)).
Then we have

M(𝜈𝐴(𝑛) | 𝑋0 = 𝑎) =
1

𝑛 + 1

𝑛∑︁
𝑚=0

𝑝(𝑚; 𝑎,𝐴).

It is known from calculus that if a sequence of real numbers {𝑥𝑛;𝑛 =
0, 1, . . .} converges to a limit 𝑥, then

lim
𝑛→∞

𝑥0 + 𝑥1 + . . . + 𝑥𝑛

𝑛 + 1
= 𝑥.

Hence if
lim
𝑛→∞

𝑝(𝑛; 𝑎, 𝑢𝑗) = 𝜋𝑗 ,
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then

M(𝜈𝐴(𝑛)) =

𝑀∑︁
𝑗=1

M(𝜈𝐴(𝑛) | 𝑋0 = 𝑎)P(𝑋0 = 𝑎) → 𝜋𝐴, where 𝜋𝐴 =
∑︁
𝑢𝑗∈𝐴

𝜋𝑗 .

A stronger statement is contained in the following theorem.

Theorem 22 (Law of large numbers for a finite Markov chain). If 𝑋0,
𝑋1, . . . , 𝑋𝑛, . . . if a finite a finite Markov chain with ergodic probability
distribution 𝜋𝑗, 𝑗 = 1, 2, . . . , 𝑀 , then

lim
𝑛→∞

P(|𝜈𝐴(𝑛) − 𝜋𝐴| > 𝜀) = 0

for every 𝜀 > 0 and every initial distribution.

Example 42: Occupational study [3]. Markov chains can be used to
study intergenerational occupation mobility. Every working person belongs
to one of a set of occupational classes (different researchers may choose
different occupational classes in accordance with different socially relevant
criteria). Then, the question is, how are occupational classes of fathers,
grand-fathers, etc., and sons are related? Let the classes be ‘non-manual
labour’, ‘manual labour’, and ‘farming’. We have data from marriage-license
applications for Marion County, Luisiana for periods of 1905–1912 and 1938–
1941. The first sample contained 10 253 observations, and the second sample
has 9 892 observations. Suppose we observe a random family: a grandfather,
a father, a son, a grand-son, etc. Let 𝑋𝑛 = 1 (non-manual), 2 (manual),
3 (farming) represent the occupational class in 𝑛-th generation, 𝑛 = 0, 1,
. . . . We assume that the sequence makes a Markov chain. The transition
probabilities can be estimated from these data by means of conditional
frequencies. From the first set of data (1905–1912) we have

𝑃 =

⎛⎝0.594 0.396 0.009
0.211 0.782 0.007
0.252 0.641 0.108

⎞⎠ .

The matrix 𝑃 has only strictly positive entries, so Theorem 21 can be ap-
plied here. The corresponding row-vector of stationary probabilities is found
as the solution to system (6.4), which take the form

𝜋1 = 0.594𝜋1 + 0.211𝜋2 + 0.252𝜋3,
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𝜋2 = 0.396𝜋1 + 0.782𝜋2 + 0.641𝜋3,

𝜋3 = 0.009𝜋1 + 0.007𝜋2 + 0.108𝜋3,

1 = 𝜋1 + 𝜋2 + 𝜋3.

The solution is
(0.343, 0.648, 0.09).

The actual fractions in each of the classes are

(0.310, 0.658, 0.034).

We observe that the actual number of farmers differs significantly from the
predicted stationary one. This would suggest that over time the numbers
of farmers should decrease.

In the second sample,

𝑃 =

⎛⎝0.622 0.357 0.003
0.274 0.721 0.005
0.265 0.694 0.042

⎞⎠ ,

the row-vector of stationary probabilities is

(0.420, 0.576, 0.04),

and the actual fractions are

(0.373, 0.616, 0.11).

As predicted, the fraction of farmers has significantly decreased. Also, one
may notice that the transition matrices have close similar elements, so the
experiment can be regarded as statistically stable. ���

Example 43: Moran inventory model. An inventory operates daily.
In the morning of day 𝑛 a supply of random size 𝑋𝑛 arrives. The daily
demand is constant and equals 1 if the morning stocks are present, and
equals 0 if the stocks are absent. The inventory capacity is 𝑀 . Let us
assume that the variables 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . are independent identically
distributed, taking on values 0, 1, . . . , 𝑀 with probabilities 𝑞0 > 0, 𝑞1 > 0,
. . . , 𝑞𝑀 > 0,

𝑞0 + 𝑞1 + . . . + 𝑞𝑀 = 1.

Denote by 𝑌𝑛 the stocks in the evening of day 𝑛. Then we have a recurrence

𝑌𝑛 = min{𝑀,𝑌𝑛−1 + 𝑋𝑛} − min{1, 𝑌𝑛−1 + 𝑋𝑛}, 𝑛 = 1, 2, . . . . (6.7)
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Then 0 6 𝑌𝑛 6 𝑀 − 1. Transitional probabilities should be calculated
taking into account recurrent equation (6.7). We have:

P(𝑌𝑛 = 0 | 𝑌𝑛−1 = 0)

= P(min{𝑀,𝑌𝑛−1 + 𝑋𝑛} − min{1, 𝑌𝑛−1 + 𝑋𝑛} = 0 | 𝑌𝑛 = 0)

= P(min{𝑀,𝑋𝑛} − min{1, 𝑋𝑛} = 0 | 𝑌𝑛 = 0)

= P(𝑋𝑛 − min{1, 𝑋𝑛} = 0)

= P(𝑋𝑛 6 1)

= 𝑞0 + 𝑞1,

P(𝑌𝑛 = 0 | 𝑌𝑛−1 = 0)

= P(𝑋𝑛 − min{1, 𝑋𝑛} = 1)

= P(𝑋𝑛 = 2) = 𝑞2,

and so on. In result, the transition probability matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎝
𝑞0 + 𝑞1 𝑞2 . . . 𝑞𝑀 0

𝑞0 𝑞1 . . . 𝑞𝑀−1 𝑞𝑀
0 𝑞0 . . . 𝑞𝑀−2 𝑞𝑀−1 + 𝑞𝑀
...

...
...

. . .
...

0 0 . . . 𝑞0 𝑞1 + . . . + 𝑞𝑀

⎞⎟⎟⎟⎟⎟⎠ .

The reader is advised to verify that 𝑃𝑀 has only strictly positive entries.
So, Theorem 21 can be applied again. The stationary probabilities 𝜋0, 𝜋1,
. . . , 𝜋𝑀−1 are to be found from a system of linear equations

𝜋0 = 𝜋0(𝑞0 + 𝑞1) + 𝜋1𝑞0,

𝜋1 = 𝜋0𝑞2 + 𝜋1𝑞1 + 𝜋2𝑞0,

. . . ,

𝜋𝑀−1 = 𝜋1𝑞𝑀 + 𝜋2(𝑞𝑀−1 + 𝑞𝑀 ) + . . . + 𝜋𝑀−1𝑞1,

1 = 𝜋0 + 𝜋1 + . . . + 𝑞𝑀−1.

Solving the first 𝑀 − 1 equations successively for 𝜋1, 𝜋2 . . . , 𝜋𝑀−1 and
keeping 𝜋0 as a parameter, we get

𝜋1 =
1 − 𝑞0 − 𝑞1

𝑞0
𝜋0,

𝜋2 =
(1 − 𝑞1)(1 − 𝑞0 − 𝑞1) − 𝑞0𝑞2

𝑞20
𝜋0,

. . .
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Then substituting these formulae into the normalization condition

1 = 𝜋0 + 𝜋1 + . . . + 𝑞𝑀−1

we get the formula for 𝜋0.
Now that we have the stationary probability distribution of 𝑌1, 𝑌2, . . . ,

we are able to calculate the steady-state mathematical expectation

𝑚steady = 𝜋1 + 2𝜋2 + 3𝜋3 + . . . + (𝑀 − 1) · 𝜋𝑀−1

and the steady-state variance

𝜎2
steady = (0−𝑚steady)2𝜋0+(1−𝑚steady)2𝜋1+ . . .+(𝑀−1−𝑚steady)2 ·𝜋𝑀−1

for remaining stocks. If a holding cost of one item is known, then one can
find a confidence interval for steady-state daily expenses, etc. ���

81



Lecture

7
Statistical estimation and hypothesis
testing

Statistics arose in Modern age in 17th century as a study of countries’
state, especially from the point of view of economics and demographics. In-
troduction of advanced mathematical methods in it took place in the course
of the 19th century and it gave birth to a new branch of mathematical sci-
ences, the mathematical statistics. Mathematical statistics studies gener-
ally those methods and techniques used in applied statistics, while applied
statistics uses those methods and techniques to analyse data. Mathemat-
ical statistics employs heavily methods of probability theory, it is one of
the largest consumers of probability theory together with applications of
stochastic processes to oprational research.

One of frequent tasks is choosing a probability model for the observed
data. It can also be called smoothing of observed frequency distributions,
or fitting a probability distribution to data.

Suppose we have a discrete variable 𝑋 with observed values

𝑥1, 𝑥2, . . . , 𝑥𝑛 (7.1)

not necessarily different. Let us denote by 𝑢1, 𝑢2, . . . , 𝑢𝑘 different values
among them. Denote by 𝑛𝑗 the number of occurrences of the value 𝑢𝑗 ,
𝑗 = 1, 2, . . . , 𝑘. Then a table with the values and their relative frequencies

𝑢1 𝑢2 . . . 𝑢𝑘

𝑛1

𝑛

𝑛2

𝑛
. . .

𝑛𝑘

𝑛

(7.2)

is called the sample frequency distribution. Let us describe here the method
of moments (method of analogy). We want to replace the observed relative
frequencies 𝑛𝑗/𝑛, 𝑗 = 1, 2, . . . , 𝑘, by numbers 𝑝𝑗 , 𝑗 = 1, 2, . . . , 𝑘 which
can be computed from a ‘nice’ formula and make a discrete probability
distribution. Assume the formula includes a set of parameters besides 𝑗,
call them 𝜃1, 𝜃2, . . . , 𝜃𝑟. Let us choose these parameters so that certain
numerical characteristics of the probability distribution 𝑝1, 𝑝2, . . . and
those of the frequency distribution 𝑛𝑗/𝑛, 𝑗 = 1, 2, . . . , 𝑘 are same. Indeed,
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the mathematical expectation 𝑚 = 𝑚(𝜃1, 𝜃2, . . . , 𝜃𝑟), the variance 𝜎2 =
𝜎2(𝜃1, 𝜃2, . . . , 𝜃𝑟) etc. become functions of the parameters. A mathematical
expectation from (7.2) is

𝑢1
𝑛1

𝑛
+ 𝑢2

𝑛2

𝑛
+ . . . + 𝑢𝑘

𝑛𝑘

𝑛
=

𝑥1 + 𝑥2 + . . . + 𝑥𝑛

𝑛
= 𝑥,

i.e. the average of the observed values (7.1). It is called the sample mean.
A variance from (7.2) is

(𝑢1 − 𝑥)2
𝑛1

𝑛
+ (𝑢2 − 𝑥)2

𝑛2

𝑛
+ . . . + (𝑢𝑘 − 𝑥)2

𝑛𝑘

𝑛

=
(𝑥1 − 𝑥)2 + (𝑥2 − 𝑥)2 + . . . + (𝑥𝑛 − 𝑥)2

𝑛
= 𝑠2,

So, we have equations

𝑥 = 𝑚(𝜃1, 𝜃2, . . . , 𝜃𝑟),

𝑠2 = 𝜎2(𝜃1, 𝜃2, . . . , 𝜃𝑟),

. . .

Instead of a variance one may use moments of the probability distribution
and sample moments

𝑥𝑘 =
𝑥𝑘
1 + 𝑥𝑘

2 + . . . + 𝑥𝑘
𝑛

𝑛
.

Example 44: Parameter estimates for some discrete probabil-
ity distributions. For a binomial probability distribution with parameters
𝑁 and 𝑝 and known value 𝑚 the unknown parameter is 𝑝, the mathemat-
ical expectation is 𝑚 = 𝑚(𝑝) = 𝑁𝑝, the variance is 𝜎2(𝑝) = 𝑀𝑝(1 − 𝑝).
Parameter 𝑝 can be found then either from an equation

𝑁𝑝 = 𝑥

or from an equation
𝑁𝑝(1 − 𝑝) = 𝑠2.

The first equation has the solution 𝑝 = 𝑥/𝑁 , but the second equation has
two solutions

𝑝 =
1

2
−

√︀
1 − 4𝑠2/𝑁

2𝑁
and 𝑝 =

1

2
+

√︀
1 − 4𝑠2/𝑁

2𝑁
.
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We can’t choose any without additional information on the magnitude of 𝑝.
For the Poisson probability distribution with parameter 𝜆 the mathe-

matical expectation is 𝑚(𝜆) = 𝜆 and the variance is 𝜎2(𝜆) = 𝜆. So, the
equation could be either

𝜆 = 𝑥

or
𝜆 = 𝑠2.

The solution is obvious. ���

If 𝑋 is a continuous variable then the sample values (7.1) are likely to be
different from each other. As we have explained in the first lecture, frequen-
cies of hitting intervals are of interest for continuous variables. Denoting by
𝑛(𝑢, 𝑣) the number of sample values in the interval (𝑢, 𝑣), −∞ < 𝑢 < 𝑣 < ∞,
we wish to smooth frequencies 𝑛(𝑢, 𝑣)/𝑛 by means of an integral

𝑣∫︁
𝑢

𝑝(𝑥) 𝑑𝑥

of some probability density. Somehow we identify the family of densities
(i.e., normal, exponential, etc.) and then choose parameters of the proba-
bility density such that selected theoretical and sample moments are equal.

Example 45: Smoothing the Groom’s age data. We wish to fit a
log-normal probability density from Example 40 to the Groom’s age data
in Example 1. The mathematical expectation of a log-normal probability
density

𝑝(𝑢) =
1

𝑢𝜎
√

2𝜋
𝑒−(ln𝑢−𝑚)2/2𝜎2

, 𝑢 > 0,

is
∞∫︁
0

𝑢 𝑝(𝑢) 𝑑𝑢 = 𝑒𝑚+𝜎2/2,

and the variance is
∞∫︁
0

𝑢2 𝑝(𝑢) 𝑑𝑢− 𝑒2𝑚+𝜎2

= (𝑒𝜎
2

− 1)𝑒𝜎
2+2𝑚.

As we have already found in Example 31, the sample mean for year 2009 is
32.009 while the sample variance is 116.559. The moments equations are

𝑒𝑚+𝜎2/2 = 32.009, (𝑒𝜎
2

− 1)𝑒𝜎
2+2𝑚 = 116.559,
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and the parameter estimates are 𝑎 = 3.412 and 𝜎 = 0.328. The smoothed
frequencies are shown in Table 7.1.

Table 7.1. Original and smoothed relative frequencies in intervals for the groom’s
ages in Costa-Rica in 2009 according to UN data

Year / Age 15–19 20–24 25–29 30–34 35–39
Original 0.0282 0.2061 0.2837 0.1865 0.1022

Smoothed 0.0862 0.1758 0.2089 0.1821 0.1317
Year / Age 40–44 45–49 50–54 55–59 >60
Original 0.0649 0.0468 0.0298 0.0202 0.0315

Smoothed 0.0849 0.0507 0.0289 0.0160 0.0348

Let us stress here that the fitted density here is just a tool to represent
observed frequency distribution in a compact form. One shouldn’t expect
that this probability density describes the probability distribution for every
single person. ���

The second most popular approach to fit a probability distribution to
experimental data is the maximum likelihood approach. Assume that the
sample values (7.1) were obtained in execution of an experiment 𝑛 times
in same conditions. We can think of the as realizations of 𝑛 independent
random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 with probability distribution identical
to 𝑋. We will introduce a likelihood function. If 𝑋 is a discrete random
variable with possible values 𝑢1, 𝑢2, . . . , and corresponding probabilities
P(𝑋 = 𝑢𝑗) = 𝑝(𝑢𝑗 ; 𝜃1, 𝜃2, . . . , 𝜃𝑟) depend also on unknown parameters 𝜃1,
𝜃2, . . . , 𝜃𝑟, then

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟) = 𝑝(𝑥1; 𝜃1, 𝜃2, . . . , 𝜃𝑟)

× 𝑝(𝑥2; 𝜃1, 𝜃2, . . . , 𝜃𝑟)

× . . .× 𝑝(𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟).

For fixed values of the parameters 𝜃1, 𝜃2, . . . , 𝜃𝑟 the likelihood function
𝐿 is simply the probability to observe equalities 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . ,
𝑋𝑛 = 𝑥𝑛, i.e. the probability to observe exactly the observed sequence of
sampled values.

If 𝑋 is a continuous random variable and 𝑝(𝑢; 𝜃1, 𝜃2, . . . , 𝜃𝑟) is its proba-
bility density, the probability that the 𝑋1 lies between 𝑥1 and 𝑥1 + ∆1, the
𝑋2 lies between 𝑥2 and 𝑥2 + ∆2, and so on, until, finally, 𝑋𝑛 lies between
𝑥𝑛 and 𝑥𝑛 + ∆𝑛, is approximately

𝑝(𝑥1; 𝜃1, 𝜃2, . . . , 𝜃𝑟)∆1𝑝(𝑥2; 𝜃1, 𝜃2, . . . , 𝜃𝑟)∆2 × · · · × 𝑝(𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟)∆𝑛
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Here ∆1, ∆2, . . . , ∆𝑟 are small constants independent of 𝑥1, 𝑥2, . . . , 𝑥𝑛.
We may consider again

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟) = 𝑝(𝑥1; 𝜃1, 𝜃2, . . . , 𝜃𝑟)

× 𝑓(𝑥2; 𝜃1, 𝜃2, . . . , 𝜃𝑟)

× . . .× 𝑝(𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟)

as an estimate for likelihood of the sample (7.1).
Assigning different values to the parameters we get an idea of how prob-

able it is to observe the sampled values (7.1) for these parameter values.
Intuitively, among several events an event with the highest probability is
expected to occur in one trial. The basic assumption of the method of max-
imum likelihood is that the sample (7.1) has been observed because of its
higher probability. From this assumption we can backtrack the correspond-
ing values of the parameters.

Definition 15. Functions 𝜃1(𝑥1, . . . , 𝑥𝑛), 𝜃2(𝑥1, . . . , 𝑥𝑛), . . . , 𝜃𝑟(𝑥1, . . . , 𝑥𝑛)
which maximize the likelihood function 𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1, 𝜃2, . . . , 𝜃𝑟) are
called maximum likelihood estimators (ML-estimator) for parameters 𝜃1,
𝜃2 . . . , 𝜃𝑟.

Example 46: Maximum likelihood estimator for a probability
of an event.

Let event 𝐴 occur in one trial with probability 𝑝. In 𝑛 trials we obtain
a sequence of observations and non-observations of 𝐴. Suppose, 𝐴 occurred
𝑘 times. The likelihood function is

𝐿(𝑘; 𝑝) = 𝑝𝑘(1 − 𝑝)𝑛−𝑘.

To maximize it with respect to 𝑝, we can use derivative. It’s more convenient
to transform the likelihood function a bit: a logarithmic function is an
increasing function and it maps products into sums. So,

ln𝐿(𝑥; 𝑝) = 𝑘 ln 𝑝 + (𝑛− 𝑘) ln(1 − 𝑝),

(ln𝐿)′ =
𝑘

𝑝
− 𝑛− 𝑘

1 − 𝑝
= 0,

(ln𝐿)′′ =
𝑘

𝑝2
− 𝑛− 𝑘

(1 − 𝑝)2
< 0,
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finally,

𝑝 =
𝑘

𝑛
.

The maximum likelihood estimator for a probability is the relative fre-
quency. ���

Example 47: ML-estimators for parameters of normal proba-
bility distribution. For a normal probability distribution with parameters
𝑎, 𝜎 one has

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝜎) =

𝑛∏︁
𝑖=1

(︂
1

𝜎
√

2𝜋
𝑒−

(𝑥𝑖−𝑎)2

2𝜎2

)︂
,

ln𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝜎) = −𝑛 ln𝜎 − 𝑛

2
ln(2𝜋) − 1

2𝜎2

{︁ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑎)2
}︁
,

𝜕 ln𝐿

𝜕𝑎
(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝜎) =

1

𝜎2

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑎) = 0,

𝜕 ln𝐿

𝜕𝜎
(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝜎) = −𝑛

𝜎
+

1

𝜎3

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑎)2 = 0.

Then 𝑎̂(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥 and 𝜎̂ = 𝑠 where 𝑠2 is the sample variance.
So, some estimators by the method of moments can also be the maximum
likelihood estimators.

Note that if 𝑎 is known and only 𝜎 is to be found, we have only one
equation

𝜕 ln𝐿

𝜕𝜎
(𝑥1, 𝑥2, . . . , 𝑥𝑛;𝜎) = −𝑛

𝜎
+

1

𝜎3

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑎)2 = 0

and its solution is

𝑠 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑎)2 .

���

Example 48: Maximum likelihood estimation for groom’s age
data. Similar calculations as above demonstrate that the maximum likeli-
hood estimators for the parameters of log-likelihood probability distribution
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are

𝑚̂(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

ln𝑥𝑖,

𝑠(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(ln𝑥𝑖 − 𝑚̂)2 .

Precisely, 𝑚̂ = 3.421 and 𝜎̂ = 0.300. ���

Example 49: Maximum likelihood estimators for parameters
of a uniform distribution. Probability density of a uniform distribution
in an interval (𝑎, 𝑏) is

𝑝(𝑢; 𝑎, 𝑏) =

{︃
0 when 𝑢 < 𝑎 or 𝑢 > 𝑏;
1

𝑏−𝑎 when 𝑎 6 𝑢 6 𝑏.

Carefully multiplying densities we get

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝑏) =

{︃
0 when 𝑎 > 𝑥(1) or 𝑏 < 𝑥(𝑛);

1
(𝑏−𝑎)𝑛 when 𝑎 6 𝑥(1), 𝑥(𝑛) 6 𝑏

where 𝑥(1) = min{𝑥1, 𝑥2, . . . , 𝑥𝑛}, 𝑥(𝑛) = max{𝑥1, 𝑥2, . . . , 𝑥𝑛}. We see that
𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝑏) is a decreasing function of interval length 𝑏 − 𝑎. But
when 𝑏 − 𝑎 is too small, 𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑎, 𝑏) = 0. The smallest feasible
interval length is 𝑥(𝑛) − 𝑥(1) when 𝑎 = 𝑥(1) and 𝑏 = 𝑥(𝑛). ���

It is instructive to study the estimators as functions of the sample. In
the examples above, different samples deliver different values for the estima-
tors. Theoretically, these values can lie far from the unknown true values of
the parameters 𝜃1, 𝜃2< . . . , 𝜃𝑟. In mathematical statistics, estimators are
studies taking into account the random nature of the sample. If the sam-
ple (7.1) has been observed in independent repetitions of an experiment,
independent random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 should be substituted into
an estimator formula 𝜃(𝑥1, 𝑥2, . . . , 𝑥𝑛) in place of the sample values 𝑥1, 𝑥2,
. . . , 𝑥𝑛. Thus a new random variable 𝜃(𝑋1, 𝑋2, . . . , 𝑋𝑛) appears. We will
review some properties of estimators which are often respected.

Definition 16. An estimator 𝜃(𝑥1, 𝑥2, . . . , 𝑥𝑛) is called unbiased when

M𝜃(𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝜃.
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Otherwise it’s called biased. The mathematical expectation should be taken
when 𝜃 is the true value of the parameter.

Example 50: Sample moments are unbiased. Assuming a mathe-
matical expectation M𝑋𝑘 exists,

𝑋𝑘 =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑘
𝑖

is an unbiased estimator for M𝑋𝑘. Indeed,

M𝑋𝑘 = M

(︂
1

𝑛
(𝑋2

1 + 𝑋2
2 + . . . + 𝑋2

𝑛)

)︂
=

1

𝑛
(M𝑋𝑘

1 + M𝑋𝑘
2 + . . . + M𝑋𝑘

𝑛) =
1

𝑛
𝑛M𝑋 = M𝑋𝑘.

On the contrary, the sample variance

𝑆2 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 −𝑋)2

is biased (see p. 59). But it follows from computations on p. 59 that

𝑆2
0 =

1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑋𝑖 −𝑋)2

is an unbiased estimator for the variance 𝜎2 = var𝑋. ���

Definition 17. Estimator 𝜃(𝑥1, 𝑥2, . . . , 𝑥𝑛) is called consistent if for any
𝜀 > 0

lim
𝑛→∞

P(|𝜃(𝑋1, . . . , 𝑋𝑛) − 𝜃| > 𝜀) = 0.

In other words, an estimator is consistent if it converges in probability
to a true value of the parameter (see p. 59).

Example 51: Some consistent estimators. We know from Lec-
ture 4 that sample moments are consistent estimators for the theoretical
moments. We also know that sample quantiles are consistent estimators for
corresponding theoretical quantities (called just quantiles). Under certain
conditions the maximum likelihood estimates are consistient. ���
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Definition 18. Let 𝜃1(𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝜃2(𝑥1, 𝑥2, . . . , 𝑥𝑛) be two estima-
tors for parameter 𝜃. The estimator 𝜃1 is said to be more efficient than 𝜃2
if

M(𝜃1 − 𝜃)2 < M(𝜃2 − 𝜃)2.

When both 𝜃1 and 𝜃2 are unbiased the condition is

var 𝜃1 < var 𝜃2.

The meaning of this definition is that a more efficient estimator has
smaller error on the average.

Example 52: Best linear estimator for an expected value.
Let 𝑋 be a random variable with finite mathematical expectation 𝑚 =

M𝑋. Then for any positive constants 𝑎1, 𝑎2, . . . , 𝑎𝑛 such that

𝑎1 + 𝑎2 + . . . + 𝑎𝑛 = 1

a linear combination

𝑎1𝑋1 + 𝑎2𝑋2 + . . . + 𝑎𝑛𝑋𝑛

is an unbiased estimator for M𝑋. Then, what constants should we choose
best? Let us introduce an objective function

𝑔(𝑎1, 𝑎2, . . . , 𝑎𝑛) = M(𝑎1𝑋1 + 𝑎2𝑋2 + . . . + 𝑎𝑛𝑋𝑛 −𝑚)2,

then we have

𝑔(𝑎1, 𝑎2, . . . , 𝑎𝑛) = M(𝑎1(𝑋1 −𝑚) + 𝑎2(𝑋2 −𝑚) + . . . + 𝑎𝑛(𝑋𝑛 −𝑚))2

=

𝑛∑︁
𝑖=1

𝑎2𝑖M(𝑋𝑖 −𝑚)2 + 2
∑︁
𝑖<𝑗

𝑎𝑖𝑎𝑗M(𝑋𝑖 −𝑚)(𝑋𝑗 −𝑚) =

= (𝑎21 + 𝑎22 + . . . + 𝑎2𝑛)var𝑋1.

We have to minimize a multivariate function 𝑔(𝑎1, . . . , 𝑎𝑛), subject to a
linear constraint 𝑎1 + . . .+ 𝑎𝑛 = 1. Introducing a Lagrange multiplier 𝜆 we
write

ℒ = (𝑎21 + . . . + 𝑎2𝑛) − 𝜆(𝑎1 + . . . + 𝑎𝑛 − 1)

The necessary condition of extremum is 𝜕ℒ/𝜕𝑎𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑛. We get

𝜕ℒ
𝜕𝑎𝑖

= 2𝑎𝑖 − 𝜆 = 0,
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whence 𝑎1 = 𝑎2 = . . . = 𝑎𝑚 = 𝜆/2. Substituting that into the constraint
we have

𝜆 = 2/𝑛

and finally 𝑎𝑖 = 1/𝑛, 𝑎1𝑋1 + . . . + 𝑎𝑛𝑋𝑛 = 𝑋. ���

Quality of approximation of experimental frequency distribution by a
probability distribution can be characterized numerically. Goodness-of-fit
tests were designed for this purpose. We will the Pearson’s1 chi-square test.
The simplest version of the test was presented in Example 17.

Let 𝑋 be a random variable and 𝑥1, 𝑥2, . . . , 𝑥𝑛 is a sample of its
values. The problem is to see if a selected probability distribution could
have generated these values. Put 𝑧0 = −∞, 𝑧𝑘 = ∞. Partition the real line
into intervals

(−∞, 𝑧1), [𝑧1, 𝑧2), [𝑧3, 𝑧4), . . . , [𝑧𝑘−1,∞)

and compute numbers of observations in each interval,

𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑘.

In practice, the number 𝑘 of intervals and the dissection points 𝑧1, 𝑧2,
. . . , 𝑧𝑘−1 should be such that each interval holds at least five observations
(this magic constant has no theoretical background and is a suggestion of
practitioners). Now compute probabilities for each interval,

𝑝𝑖 = P(𝑧𝑖−1 6 𝑋 < 𝑧𝑖)

and expected frequencies
𝑒𝑖 = 𝑛𝑝𝑖.

If the selected probability distribution fits well with the data, 𝑛𝑖, should
be close to the expected frequencies, 𝑒𝑖. In fact, the actual number of
observations in the interval [𝑧𝑖−1, 𝑧𝑖) is random and it has the binomial
distribution with parameters 𝑛, 𝑝𝑖. Then 𝑛𝑝𝑖 = 𝑒𝑖 is the mathematical
expectation of the number of such observations.

The goodness of fit is measured with statistic

𝜒2 =

𝑘∑︁
𝑖=1

(𝑛𝑖 − 𝑒𝑖)
2

𝑒𝑖
= 𝑛

𝑘∑︁
𝑖=1

(︀
𝑝𝑖 − 𝑛𝑖

𝑛

)︀2
𝑝𝑖

.

Assuming the hypothesis on the probability distribution of 𝑋 is true, the
probability distribution of 𝜒2 statistic tends to the 𝜒2 distribution with

1Pearson Karl (1857–1936) was English mathematician and statistician.
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𝑘 − 1 degrees of freedom. Since small values of 𝜒2 agree with the hypothe-
sized probability distribution of 𝑋, we will reject the hypothesis when 𝜒2 is
greater than some limit 𝑅. This decision rule introduces a possibility of an
error when we reject a true hypothesis. This type of errors is called type I.
The probability of a type I error is called a significance level of the test (of
the decision rule). Since under the hypothesis being tested the 𝜒2 statistic
has approximately 𝜒2 distribution with parameter 𝑘− 1, the corresponding
probability can be expressed by an integral over the 𝜒2 probability density,

∞∫︁
𝑅

𝑢(𝑘−1)2−1𝑒−𝑢/2

2(𝑘−1)/2Γ((𝑘 − 1)/2)
𝑑𝑢.

The integral tends to zero as 𝑅 grow to infinity. So, choosing a value 𝑅
sufficiently large, we can make the integral together with the type I error
less or equal a previously selected significance level 𝛼.

If the hypothesized probability distribution is known up to a number 𝑙
of parameters and the parameters have been estimated my method of max-
imum likelihood then the number of degrees of freedom should be reduced
by 𝑙.

Example 53: Testing goodness-of-fit for groom’s age data. In
Example 45 the observed frequencies were smoothed by a log-normal prob-
ability density with parameters 𝑚 = 3.412 and 𝜎 = 0.3. The intervals, the
observed and the predicted frequencies are shown in Table 7.2.

Table 7.2. Observed and predicted frequencies according to a log-normal
probability distribution

Year / Age (−∞, 19) [20, 25) [25, 30) [30, 35) [35, 40)
observed 0.0282 0.2061 0.2837 0.1865 0.1022
predicted 0.0782 0.1721 0.2234 0.1992 0.1412

Year / Age [40, 45) [45, 50) [50, 55) [55, 60) [60,∞)
Original 0.0649 0.0468 0.0298 0.0202 0.0315

Smoothed 0.0866 0.0485 0.0255 0.0129 0.0124

The total number of observations is 23 221 and the 𝜒2 statistic is

23221·
(︂

(0.0282 − 0.0782)2

0.0782
+

(0.2061 − 0.1720)2

0.1720
+

(0.2837 − 0.2234)2

0.22324

+
(0.1865 − 0.1992)2

0.1992
+

(0.1022 − 0.1412)2

0.1412
+

(0.0649 − 0.0866)2

0.0866
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+
(0.0468 − 0.0485)2

0.0485
+

(0.0298 − 0.0255)2

0.0255
+

(0.0202 − 0.0129)2

0.0129

+
(0.0315 − 0.0124)2

0.0124

)︂
= 2472.

This value is too large. The number of degrees of freedom is 10− 2− 1 = 7
and with probability 0.99 a random variable with the 𝜒2-distribution with
7 degrees of freedom lies in the interval (0, 18.475), i.e. 𝑅 = 18.475 for the
significance level 𝛼 = 0.01. The log-normal hypothesis should be rejected.

In such a situation a statistician tries another probability distribution.
Let us try and fit a shifted gamma-distribution with probability density

𝑝(𝑢) =
(𝑢− 𝜏)𝑎−1

𝑏𝑎Γ(𝑏)
𝑒−(𝑢−𝜏)/𝑏, 𝑢 > 𝜏

where 𝜏 is the shift parameter, 𝑎 is called a shape parameter, and 𝑏 is called
a scale parameter. We let 𝜏 = 15 which corresponds to the smallest observed
value of 15 years. Unfortunately, the maximum likelihood estimators are
solutions of a transcendent system of equations has no explicit solution, so
the parameters 𝑎 and 𝑏 should be found by a numerical procedure. We get,
after all, 𝑎 = 2.835 and 𝑏 = 0.1658. The predicted frequencies are shown in
Table 7.3. The 𝜒2 statistic is 1380.16 which is still too large but is lower
than that for a log-normal probability distribution.

Table 7.3. Observed and predicted frequencies according to a shifted gamma
probability distribution

Year / Age (−∞, 19) [20, 25) [25, 30) [30, 35) [35, 40)
observed 0.0282 0.2061 0.2837 0.1865 0.1022
predicted 0.0660 0.2001 0.2274 0.1856 0.1294

Year / Age [40, 45) [45, 50) [50, 55) [55, 60) [60,∞)
Original 0.0649 0.0468 0.0298 0.0202 0.0315

Smoothed 0.0819 0.0487 0.0277 0.0153 0.0169

���

Sometimes a feasible family of probability distributions is known from
general considerations and a statistician is only unsure about the value of
a single parameter 𝜃. We will consider the simplest case when to choose
between two possibilities, 𝜃0 and 𝜃1. Let us call the assumption 𝜃 = 𝜃0
the null hypothesis and the assumption 𝜃 = 𝜃1 the alternative hypothesis. A
decision rule observes the sample (7.1) and decides to accept 𝐻0 or reject 𝐻0
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in favor of 𝐻1. A general method to construct a decision rule by considering
the likelihood ratio

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1)

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃0)
.

In mathematical statistics it is proven that the optimal decision rule rejects
𝐻0 when the likelihood ratio exceeds a level 𝐶𝛼. The level should be chosen
to guarantee the significance level 𝛼. Besides type I errors, other error
is possible. Assume 𝐻1 is true but the observed sample is such that the
decision rule prescribes to accept 𝐻0. This is a type II error. Its probability
is often denoted by 𝛽.

Example 54: Testing hypothesis on the mathematical expecta-
tion of normal probability distribution. Let 𝑋 have a normal prob-
ability distribution with unknown mathematical expectation 𝑎 and known
variance 𝜎2. Let the possible values for𝑎 be 𝑎0 and 𝑎1. Then the likelihood
ratio is

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1)

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃0)
=

∏︀𝑛
𝑗=1

1

𝜎
√

2𝜋
𝑒−(𝑥𝑖−𝑎1)

2/2𝜎2

∏︀𝑛
𝑗=1

1

𝜎
√

2𝜋
𝑒−(𝑥𝑖−𝑎0)2/2𝜎2

= exp
{︁ 1

2𝜎2

𝑛∑︁
𝑖=1

((𝑥𝑖 − 𝑎0)2 − (𝑥𝑖 − 𝑎1)2)
}︁

= exp
{︁𝑛(𝑎1 − 𝑎0)

𝜎2
𝑥 +

𝑛

2𝜎2
(𝑎20 − 𝑎21)

}︁
.

Let us assume additionally that 𝑎1 > 𝑎0 (the opposite case 𝑎1 < 𝑎0 should be
studied by the reader on his own). Then the likelihood ratio is an increasing
function of 𝑥. The inequality

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃1)

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃0)
> 𝐶𝛼

is equivalent to
𝑥 > ̃︀𝐶𝛼

where ̃︀𝐶𝛼 should be chosen to guarantee the significance level 𝛼. We know
that the sample mean 𝑋 has the normal probability distribution with math-
ematical expectation 𝑎0 (under 𝐻0) and variance 𝜎2/𝑛 (see Example 23).
Hence, ̃︀𝐶𝛼 is the solution of the equation

1 − Φ
(︁ ̃︀𝐶𝛼 − 𝑎0

𝜎

√
𝑛
)︁

= 𝛼,
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i.e. ̃︀𝐶𝛼 = 𝑎0+𝜎𝑧1−𝛼/
√
𝑛 where 𝑧1−𝛼 is the solution of Φ(𝑧) = 𝛼 (determined

from Table 3). Under 𝐻1 the sample mean 𝑋 has the normal probability
distribution with mathematical expectation 𝑎1 and variance 𝜎2/𝑛 and the
probability of type II error is

𝛽 = Φ
(︁ ̃︀𝐶𝛼 − 𝑎1

𝜎

√
𝑛
)︁

= Φ
(︁𝑎0 − 𝑎1

𝜎

√
𝑛 + 𝑧1−𝛼

)︁
< Φ(𝑧1−𝛼) = 1 − 𝛼.

So, 𝛽 + 𝛼 6 1. If we want to guarantee the type II error probability 𝛽 we
can do that by choice of 𝑛 the sample size from the formula above. ���
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Lecture

8
Statistical methods to process
experimental data

In this lecture we will review several important statistical procedures to
study functional and statistical dependence of variables.

First we will study a linear regression model. Suppose we study a pro-
duction process where one input variable 𝑋 affects one output variable 𝑌 .
Suppose we have a sample

(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) (8.1)

where a value of 𝑋 was set and a response value of 𝑌 was measured, keeping
other conditions the same. Plotting the points (8.1) we may have a guess
that

𝑦𝑗 = 𝑏0 + 𝑏1𝑥𝑗 + 𝑒𝑗

where 𝑏0 (the intersect) and 𝑏1 (the slope) are parameters of a linear func-
tion, and 𝑒𝑗 is an error term due to measurement errors and influence of
other uncontrolled factors. The proposed model is then

𝑌𝑗 = 𝑏0 + 𝑏1𝑥𝑗 + 𝜀𝑗 , 𝑗 = 1, 2, . . . , 𝑛,

where 𝑌𝑗 is a random variable representing the output in 𝑗-th measurement
above, and 𝜀𝑗 is the random error term. Following Gauss, we assume that

1. The mean error is zero, M𝜀𝑗 = 0, 𝑗 = 1, 2, . . . , 𝑛;

2. The errors are uncorrelated and have same variances, var 𝜀𝑗 = 𝜎2 and
cov (𝜀𝑖, 𝜀𝑗) = 0, 1 6 𝑖 < 𝑗 6 𝑛;

3. 𝑥1, 𝑥2, . . . , 𝑥𝑛 are nonrandom;

4. 𝜀𝑗 , 𝑗 = 1, 2, . . . , 𝑛 have normal probability distribution.

Let us find maximum likelihood estimators for the intercept 𝑏0, the slope
𝑏1, and the standard deviation of errors 𝜎. Under Gauss’s assumptions, 𝑌𝑗

has a normal probability distribution with the mathematical expectation
𝑏0 + 𝑏1𝑥𝑗 and variance 𝜎2. The likelihood function is

𝐿(𝑏0, 𝑏1, 𝜎) =

𝑛∏︁
𝑗=1

1

𝜎
√

2𝜋
𝑒−(𝑦𝑗−𝑏0−𝑏1𝑥𝑗)

2/2𝜎2

.
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and the logarithm of that is

ln𝐿(𝑏0, 𝑏1, 𝜎) = −𝑛

2
ln 2𝜋𝜎2 − 1

2𝜎2

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑏0 − 𝑏1𝑥𝑗)
2.

By taking derivatives of ln𝐿(𝑏0, 𝑏1, 𝜎) with respect to 𝑏0, 𝑏1, and 𝜎2 we have
equations

𝜕 ln𝐿

𝜕𝑏0
=

1

𝜎2

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑏0 − 𝑏1𝑥𝑗) = 0,

𝜕 ln𝐿

𝜕𝑏1
=

1

𝜎2

𝑛∑︁
𝑗=1

𝑥𝑗(𝑦𝑗 − 𝑏0 − 𝑏1𝑥𝑗) = 0,

𝜕 ln𝐿

𝜕𝜎2
= − 𝑛

2𝜎2
+

1

2𝜎4

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑏0 − 𝑏1𝑥𝑗)
2 = 0.

The solution is

𝑏̂1 =

𝑛
𝑛∑︀

𝑗=1

𝑥𝑗𝑦𝑗 −
(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁(︁ 𝑛∑︀
𝑗=1

𝑦𝑗

)︁
𝑛

𝑛∑︀
𝑗=1

𝑥2
𝑗 −

(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁2 =

1
𝑛

𝑛∑︀
𝑗=1

(𝑥𝑗 − 𝑥)𝑦𝑗

𝑠2x
,

𝑏̂0 = 𝑦 − 𝑏̂1𝑥 =
1

𝑛𝑠2x

𝑛∑︁
𝑗=1

𝑦𝑗(𝑠
2
x − (𝑥𝑗 − 𝑥)),

𝜎̂2 =
1

𝑛

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑏̂0 − 𝑏̂1𝑥𝑗)
2,

where

𝑠2x =
1

𝑛

𝑛∑︁
𝑗=1

𝑥2
𝑗 −

(︁ 1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑗

)︁2

, 𝑠x =
√︀

𝑠2x

is the sample variance of 𝑋. Functions 𝑏̂0 = 𝑏̂0(𝑦1, 𝑦2, . . . , 𝑦𝑛) and 𝑏̂1 =

𝑏̂1(𝑦1, 𝑦2, . . . , 𝑦𝑛) are linear in the variables 𝑦1, 𝑦2, . . . , 𝑦𝑛. So, they have
normal probability distributions with mathematical expectations

M𝑏̂1(𝑌1, 𝑌2, . . . , 𝑌𝑛) =

𝑛
𝑛∑︀

𝑗=1

𝑥𝑗M𝑌𝑗 −
(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁(︁ 𝑛∑︀
𝑗=1

M𝑌𝑗

)︁
𝑛

𝑛∑︀
𝑗=1

𝑥2
𝑗 −

(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁2
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=

𝑛
𝑛∑︀

𝑗=1

𝑥𝑗(𝑏0 + 𝑏1𝑥𝑗) −
(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁(︁ 𝑛∑︀
𝑗=1

(𝑏0 + 𝑏1𝑥𝑗)
)︁

𝑛
𝑛∑︀

𝑗=1

𝑥2
𝑗 −

(︁ 𝑛∑︀
𝑗=1

𝑥𝑗

)︁2 = 𝑏1,

M𝑏̂0(𝑌1, 𝑌2, . . . , 𝑌𝑛) = M𝑌 − 𝑥M𝑏̂1(𝑌1, 𝑌2, . . . , 𝑌𝑛)

= 𝑏0 + 𝑏1𝑥− 𝑥𝑏1 = 𝑏0,

and variances

var 𝑏̂1(𝑌1, 𝑌2, . . . , 𝑌𝑛) = var

𝑛∑︀
𝑗=1

𝑌𝑗(𝑥𝑗 − 𝑥)

𝑛𝑠2x

=

𝑛∑︀
𝑗=1

(𝑥𝑗 − 𝑥)2var𝑌𝑗

𝑛2𝑠4x
=

𝜎2

𝑛𝑠2x
,

var 𝑏̂0(𝑌1, 𝑌2, . . . , 𝑌𝑛) =
1

𝑛2𝑠4x

𝑛∑︁
𝑗=1

(𝑠2x − (𝑥𝑗 − 𝑥))2var𝑌𝑗

=
𝜎2(𝑠2x + 1)

𝑛𝑠2x
.

It can be proven also that 𝑛𝜎̂2(𝑌1, 𝑌2, . . . , 𝑌𝑛)/𝜎2 has the 𝜒2-distribution
with 𝑛 − 2 degrees of freedom. It turns out that the random variables
𝑏̂0(𝑋1, 𝑋2, . . . , 𝑋𝑛) and 𝜎̂2(𝑋1, 𝑋2, . . . , 𝑋𝑛) are independent, and so are
𝑏̂1(𝑋1, 𝑋2, . . . , 𝑋𝑛) and 𝜎̂2(𝑋1, 𝑋2, . . . , 𝑋𝑛). It follows from Lecture 3 that
a statistic

𝑏̂1(𝑌1, 𝑌2, . . . , 𝑌𝑛) − 𝑏1
𝜎̂(𝑌1, 𝑌2, . . . , 𝑌𝑛)

√︀
𝑛𝑠2x

has Student’s 𝑡-distribution with (𝑛− 2) degrees of freedom.
The quality of linear model for the sample (8.1) can be measured as

follows. Let us consider the total sum of squares

𝑄 =

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑦)2

of deviations of the output values from their average. Using explicit formulae
for 𝑏̂0 and 𝑏̂1 we can partition the total sum of squares into a sum

𝑄1 + 𝑄2 =

𝑛∑︁
𝑗=1

(𝑏̂0 + 𝑏̂1𝑥𝑗 − 𝑦)2 +

𝑛∑︁
𝑗=1

(𝑦𝑗 − 𝑏̂0 − 𝑏̂1𝑥𝑗)
2.
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Here 𝑄1 is the regression sum of squares, or explained sum of squares, and
𝑄2 is the sum of squares of residuals, or the residual sum of squares. If the
linear dependence on 𝑋 explains the observed changes in 𝑌 , then 𝑄1 should
be close to 𝑄 and 𝑄2 should be small. The coefficient of determination is
defined as

𝑅2 =
𝑄1

𝑄
= 1 − 𝑄2

𝑄
.

The closer 𝑅2 is to unity the better.
Under a hypothesis

𝐻0 : 𝑏1 = 0

the ratio
𝐹 =

(𝑛− 2)𝑄1

𝑄2

has an 𝐹 -distribution with 1 and 𝑛−2 degrees of freedom. Here hypothesis
𝐻0 means no linear dependence of 𝑌 on 𝑋. 𝐻0 is rejected when the observed
value 𝐹 exceeds a table value for a selected significance level 𝛼.

After the parameters 𝑏0 and 𝑏1 have been estimated and 𝐻0 has been
rejected one uses the equation

𝑌 = 𝑏̂0 + 𝑏̂1𝑋

to predict expected values of 𝑌 for different values of 𝑋 within the studied
range of 𝑋.

Example 55: Production cost of a book. Table 8.1 demonstrates
the production cost 𝑦 (in hundred Roubles) of one book item depending on
a number 𝑥 of printed copies (in thousands) over several years. The plot
of the data in Fig. 8.1 demonstrates that the production cost is in inverse
ratio to the number of prined copies. Firstly, we change the input variable
𝑥 into 𝑧 = 1/𝑥. The plot of 𝑦 as a function of 𝑧 can be seen in Fig. 8.2.

Table 8.1. Production cost of a book item for different numbers of printed copies
in thousands (𝑧𝑖 = 1/𝑥𝑖)

𝑥𝑖 1 2 3 5 10 20 30 50 100 200
𝑦𝑖 10.15 5.52 4.08 2.85 2.11 1.62 1.41 1.30 1.21 1.15
𝑧𝑖 1 0.5 0.333 0.2 0.1 0.05 0.033 0.02 0.01 0.005

It is natural to seek for a linear function

𝑦 = 𝑏0 + 𝑏1𝑧 = 𝑏0 +
𝑏1
𝑥

.
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Figure 8.1. Plot of production cost of an item (blue points) and a fitted curve
(brown)

Using the formulae above we obtain

𝑧 = 0.225,

𝑦 = 3.14,

11∑︁
𝑗=1

𝑥𝑗𝑦𝑗 = 15.223,

𝑏̂1 = 8.876,

𝑏̂0 = 1.119,

𝜎̂2 = 0.03424.

The fitted curve is

𝑦 = 1.119 + 8.876𝑧 = 1.119 +
8.876

𝑧
.

A brown curve in Fig. 8.1 and a brown line in 8.2 show the estimated
functional dependence. To compute the coefficient of determination we
compute 𝑄 and 𝑄2. We have

𝑄 = 73.207, 𝑄2 = 0.0274, 𝑅2 = 0.9996.

The 𝐹 -ratio is 21376.3 which is rather high for a random variable with 𝐹 -
distribution with 8 and 1 degrees of freedom. Here 𝑏0 can be interpreted
as the cost of production of one item in an infinite print run. Please pay
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Figure 8.2. Plot of production cost of an item after change of the input variable

attention that this formula behaves badly as 𝑥 is near zero. The reasons
are both economic and mathematical. Producing half a book is meaningless
(we try to apply the formula in wrong domain), and the regression is not a
good tool for extrapolation. ���

This simple regression model with one input variable and one output
variable has a natural extension to several input variables. We will consider
below a particular case when the input variables take on ‘binary values’
0 and 1. Such a model can be used to compare several groups of objects.
Consider the following situation: we have 𝑔 different technologies to produce
an item and the question is if all technologies guarantee the same reliability,
𝑋, of a product. We can study items produced using each technology 𝑖 = 1,
2, . . . , 𝑔, and measure the reliability. Denote by 𝑥𝑖,𝑗 the reliability of the
𝑗-th item in the 𝑖-th group (𝑖-th technology). Let the 𝑖-th group have 𝑛𝑖

observations. Here a technology type is the factor explaining the variable
𝑋.

A model with one factor (i.e. a qualitative input variable) is

𝑋𝑖,𝑗 = 𝜇𝑖 + 𝜀𝑖,𝑗 ,

where 𝜇𝑖 is a mean value explained by the value of the factor, and 𝜀𝑖,𝑗 is a
random measurement error.
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Classic assumptions are:

1. 𝜀𝑖,𝑗 = 0, so that there’s no systematic errors in observations;

2. errors {𝜀𝑖,𝑗 : 𝑖 = 1, 2, . . . , 𝑔; 𝑗 = 1, 2, . . . , 𝑛𝑖} are independent;

3. the errors have the same variance, var 𝜀𝑖,𝑗 = 𝜎2;

4. the errors {𝜀𝑖,𝑗 : 𝑖 = 1, 2, . . . , 𝑔; 𝑗 = 1, 2, . . . , 𝑛𝑖} have a normal distri-
bution.

A null hypothesis is
𝐻0 : 𝜇1 = 𝜇2 = . . . = 𝜇𝑔,

in other words, all groups are statistically similar, and the factor doesn’t
influence the variable 𝑋.

Put 𝑛 = 𝑛1 + 𝑛2 + . . . + 𝑛𝑔,

𝑥 =
1

𝑛

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝑥𝑖,𝑗 , 𝑥𝑖 =
1

𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑥𝑖,𝑗 .

Here 𝑥 is the overall average, 𝑥𝑖 is the average in the 𝑖-th group. Then we
transform the total sum of squares of deviations as

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥)2 =

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖 + 𝑥𝑖 − 𝑥)2 =

=

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖)
2 + 2

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖)(𝑥𝑖 − 𝑥) +

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖 − 𝑥)2.

One has
𝑔∑︁

𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖)(𝑥𝑖 − 𝑥) =

𝑔∑︁
𝑖=1

(︂
(𝑥𝑖 − 𝑥)

𝑛𝑔∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖)

)︂
= 0.

Thus
𝑔∑︁

𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥)2⏟  ⏞  
𝑄0

=

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑖)
2

⏟  ⏞  
𝑄1

+

𝑔∑︁
𝑖=1

𝑛𝑖(𝑥𝑖 − 𝑥)2⏟  ⏞  
𝑄2

.
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𝑄0 is called a total sum of squares, 𝑄1 is called a sum of squares within
groups, 𝑄2 is called a weighted sum of squares between groups.

When 𝐻0 is true, it seems likely that 𝑄0 and 𝑄1 should be comparatively
close while 𝑄2 should be significantly less that 𝑄1.

To test 𝐻0 a ratio

𝐹 =
𝑄2(𝑛− 𝑔)

𝑄1(𝑔 − 1)

is used. Under 𝐻0, 𝐹 has an F-distribution with 𝑔 − 1 and 𝑛 − 𝑔 degrees
of freedom. 𝐻0 is rejected at significance level 𝛼, when 𝐹 > 𝐹𝛼;𝑔−1,𝑛−𝑔 for
suitably chosen 𝐹𝛼;𝑔−1,𝑛−𝑔 (using tables or software).

Example 56: Teaching method study. Four groups of students
were taught to perform a production operations. Each group had its own
study program. After completion of the learning process the students had
to produce articles during one hour. Table 8.2 demonstrates the numbers
of articles produces by the students. We’d like to prove that some of the
teaching methods lead to higher productivity.

Table 8.2. Productivity of students in different groups

Group 𝑥𝑖,𝑗 𝑛𝑖 group average,
𝑥𝑖

1 60, 80, 75, 80, 85, 70 6 75
2 75, 66, 85, 80, 70, 80, 90 7 78
3 60, 80, 65, 60, 86, 75 6 71
4 95, 85, 100, 80 4 90

Total: 23 77.48

The computations necessary to test the hypothesis that the teaching
methods don’t lead to different resulting productivities of students:

𝑥1 =
1

6
(60 + 80 + 75 + 80 + 85 + 70) = 75,

𝑥2 =
1

7
(75 + 66 + 85 + 80 + 70 + 80 + 90) = 78,

𝑥3 =
1

6
(60 + 80 + 65 + 60 + 86 + 75) = 71,

𝑥4 =
1

4
(95 + 85 + 100 + 80) = 90,
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𝑥 =
1

23
(60 + 80 + . . . + 80) = 77.48,

𝑄0 = (60 − 77.48)2 + (80 − 77.48)2 + . . . + (80 − 77.48)2 = 2414.7,

𝑄1 = (60 − 75)2 + . . . + (70 − 75)2+

+(75 − 78)2 + . . . + (90 − 78)2+

+(60 − 71)2 + . . . + (75 − 71)2+

+(95 − 90)2 + . . . + (80 − 90)2 = 1497,

𝑄2 = 6(75 − 77.48)2 + 7(78 − 77.48)2+

+6(71 − 77.48)2 + 4(90 − 77.48)2 = 1497,

𝐹 =
1497 · (23 − 4)

1497 · (4 − 1)
= 3.88.

For 𝛼 = 0.05, 𝐹0.05;3,19 = 3.127. 𝐻0 should be rejected. ���

When the variables are qualitative (taking non-numerical values), one
can’t speak of functional dependence. Here statistical dependence comes in
handy. Assume 𝑛 items have been observed and two variables describing an
item were recorded. Variables can be both numerical (e.g. a measurement)
and categorical (e.g. color, sex, etc.) The values of the first variable are
distributed in 𝑘 classes (intervals), the values of the second variables are
distributed in 𝑚 classes. Data is represented in a contingency table.

𝐵1 𝐵2 . . . 𝐵𝑚

𝐴1 𝑛1,1 𝑛1,2 . . . 𝑛1,𝑚

𝐴2 𝑛2,1 𝑛2,2 . . . 𝑛2,𝑚

... 𝑛1,1 𝑛1,2 . . . 𝑛1,𝑚

𝐴𝑘 𝑛𝑘,1 𝑛𝑘,2 . . . 𝑛𝑘,𝑚

Here 𝑛𝑖.𝑗 is the number of observations belonging to the 𝑖-th class of the
first variable and at the same time to the 𝑗-th class of the second variable.

Denote by 𝑝𝑖,𝑗 = P(𝐴𝑖, 𝐵𝑗) the probability for an item to belong to
classes 𝐴𝑖 and 𝐵𝑗 at the same time, 𝑝

(1)
𝑖 = P(𝐴𝑖), 𝑝

(2)
𝑗 = P(𝐵𝑗) with

obvious meaning. We want to test a null hypothesis

𝐻0 : 𝑝𝑖,𝑗 = 𝑝
(1)
𝑖 𝑝

(2)
𝑗 for all 𝑖, 𝑗.

𝐻0 means that the variables are independent. The maximum likelihood
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estimators for the probabilities are

𝑝𝑖,𝑗 =
𝑛𝑖,𝑗

𝑛
,

𝑝
(1)
𝑖 =

𝑛𝑖,1 + . . . + 𝑛𝑖,𝑚

𝑛
=

𝑛
(1)
𝑖

𝑛
,

𝑝
(2)
𝑗 =

𝑛1,𝑗 + . . . + 𝑛𝑘,𝑗

𝑛
=

𝑛
(2)
𝑗

𝑛
.

Under 𝐻0 it is likely that
𝑝𝑖,𝑗 ≈ 𝑝

(1)
𝑖 𝑝

(2)
𝑗 ,

or

𝑛𝑖,𝑗 ≈
𝑛
(1)
𝑖 𝑛

(2)
𝑗

𝑛
.

To test 𝐻0 we will use a 𝜒2 statistic

𝜒2 = 𝑛

𝑘∑︁
𝑖=1

𝑚∑︁
𝑗=1

(︁
𝑛𝑖,𝑗 −

𝑛
(1)
𝑖 𝑛

(2)
𝑗

𝑛

)︁2

𝑛
(1)
𝑖 𝑛

(2)
𝑗

.

Under 𝐻0 𝜒2 has approximately the 𝜒2-square probability distribution with
(𝑘 − 1)(𝑙 − 1) degrees of freedom as 𝑛 → ∞. So, we can find a confidence
interval for this statistics under 𝐻0 for any significance level 𝛼 and then
we will reject the null hypothesis when the 𝜒2 statistic falls outside this
interval.
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Table 3. Table of the function Φ0(𝑢) =
1√
2𝜋

𝑢∫︀
0

𝑒−𝑡2/2 𝑑𝑡

𝑢 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.02790 0.03188 0.03586
0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535
0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409
0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173
0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793
0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240
0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490
0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524
0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327
0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891
1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214
1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298
1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147
1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774
1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189
1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408
1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449
1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327
1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062
1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670
2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169
2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574
2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899
2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158
2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361
2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520
2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643
2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736
2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807
2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861
3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
3.1 0.49903 0.49906 0.49910 0.49913 0.49916 0.49918 0.49921 0.49924 0.49926 0.49929
3.2 0.49931 0.49934 0.49936 0.49938 0.49940 0.49942 0.49944 0.49946 0.49948 0.49950
3.3 0.49952 0.49953 0.49955 0.49957 0.49958 0.49960 0.49961 0.49962 0.49964 0.49965
3.4 0.49966 0.49968 0.49969 0.49970 0.49971 0.49972 0.49973 0.49974 0.49975 0.49976
3.5 0.49977 0.49978 0.49978 0.49979 0.49980 0.49981 0.49981 0.49982 0.49983 0.49983
3.6 0.49984 0.49985 0.49985 0.49986 0.49986 0.49987 0.49987 0.49988 0.49988 0.49989
3.7 0.49989 0.49990 0.49990 0.49990 0.49991 0.49991 0.49992 0.49992 0.49992 0.49992
3.8 0.49993 0.49993 0.49993 0.49994 0.49994 0.49994 0.49994 0.49995 0.49995 0.49995
3.9 0.49995 0.49995 0.49996 0.49996 0.49996 0.49996 0.49996 0.49996 0.49997 0.49997
4.0 0.49997 0.49997 0.49997 0.49997 0.49997 0.49997 0.49998 0.49998 0.49998 0.49998
4.1 0.49998 0.49998 0.49998 0.49998 0.49998 0.49998 0.49998 0.49998 0.49999 0.49999
4.2 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999
4.3 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999 0.49999
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