МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

Методические указания к решению задач по численному интегрированию

Учебно-методическое пособие

Рекомендовано методической комиссией ИИТММ для студентов ННГУ, обучающихся по направлению подготовки 01.03.02 «Прикладная математика и информатика»

Нижний Новгород 2016 УДК 519.6. ББК 22.19 М-54

М-54 Методические указания к решению задач по численному интегрированию: Составители: Калашников А.Л., Федоткин А.М., Фокина В.Н. Учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2016. – 31 с.

Рецензент: к.ф.-м.н. доцент А.Г. Панасенко

В пособии приведены методические указания для решения задач по теме "Численное интегрирование", относящейся к разделу курса «Численные методы». На примерах продемонстрированы различные приёмы вычисления интегралов на основе интерполяции и квадратурных формул Гаусса. Рассмотрены, кроме того, способы приближенного вычисления несобственных интегралов 1-го и 2-го рода, а также двойного интеграла. Приведена программа в математическом пакете scilab для приближённого вычисления двойного интеграла по криволинейной области. Следует отметить, что этот пакет за счёт встроенных в него операторов можно использовать также для вычисления определённых интегралов функции одной переменной.

Работа будет полезна при проведении практических занятий по численным методам и для самостоятельной работы студентов ИИГММ ННГУ.

ОГЛАВЛЕНИЕ стр.

ВВЕДЕНИЕ	4
1. ПРИМЕНЕНИЕ ИНТЕРПОЛЯЦИИ В ИНТЕГРИРОВАНИИ	
1.1. Общая квадратурная формула	5
1.2. Квадратурная формула на основе многочлена Лагранжа	6
1.3. Формулы Ньютона-Котеса	8
1.4. Частные случаи формулы Ньютона-Котеса	9
1.5. Примеры на квадратурные формулы Ньютона-Котеса	
2. КВАДРАТУРНАЯ ФОРМУЛА ГАУССА	17
3. ВЫЧИСЛЕНИЕ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ	20
4. ВЫЧИСЛЕНИЕ ДВОЙНОГО ИНТЕГРАЛА	24
ЛИТЕРАТУРА	30

ВВЕДЕНИЕ

К численному интегрированию приходится обращаться, когда требуется вычислить определённый интеграл от функций, заданных таблично, или непосредственное нахождение первообразной затруднительно. Последнее, например, возникает при сложном аналитическом задании подинтегральной функции, а также, если интеграл не берётся в элементарных функциях. В этом случае можно, в частности, искомую функцию f(x) интерполировать

и за определённый интеграл $\int_a^b f(x)dx$ взять $\int_a^b P(x)dx$. Здесь функция f(x) = P(x) + R(x), где P(x) интерполирующая функция, а R(x) остаток интерполяции и $x \in [a,b]$. Очевидно, погрешность такого приближённого интегрирования будет $\int_a^b R(x)dx$ и, если $R(x) \approx 0$, то $\int_a^b R(x)dx \approx 0$. Возможны

и другие способы численного интегрирования, основанные на точности квадратурных формул для полиномов как можно большей степени.

В дальнейшем, не оговаривая это особо, будем везде предполагать интегрируемость искомой функции f(x).

Материал разбит на 4 главы. Глава 1 посвящена применению интерполяции для приближённого вычисления определённого интеграла. В главе 2 представлены квадратурные формулы Гаусса. В главе 3 рассмотрены способы приближённого вычисления несобственных интегралов 1-го и 2-го рода. Глава 4 посвящена кубатурным формулам приближённого вычисления двойного интеграла и применение математического пакета scilab для его вычисления в криволинейной области.

Пособие будет полезно при проведении практических занятий по численным методам и для самостоятельной работы студентов ИИГММ ННГУ.

1. ПРИМЕНЕНИЕ ИНТЕРПОЛЯЦИИ В ИНТЕГРИРОВАНИИ

Здесь будем рассматривать формулы численного интегрирования для таблично заданной функции или, в случае её аналитического задания, табулирование этой функции. Тогда, как известно, приближённое равенство

$$\int_{a}^{b} f(x)dx \cong \sum_{k=0}^{n} A_{k} f(x_{k})$$
(1)

называется квадратурной формулой, определяемой узлами x_k и квадратурными коэффициентами A_k . Выражение в правой части (1) называют квадратурной суммой, а разность

$$\rho_n(f) = \int_{a}^{b} f(x)dx - \sum_{k=0}^{n} A_k f(x_k)$$
 (2)

остаточным членом или остатком этой квадратурной формулы. Остаток, в иных случаях его называют ещё и погрешностью квадратурной формулы, зависит как от расположения узлов, так и от выбора A_k .

1.1. Общая квадратурная формула

Пусть $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ - система Чебышева линейно независимых функций на [a,b]. По ней строим интерполяционный многочлен

$$\Phi(x) = \sum_{i=0}^{n} C_i \varphi_i(x)$$
(3)

совпадающий с f(x) в узлах $x_k \in [a,b]$, где k=0,...,n. Отметим, что концы отрезка [a,b] могут и не входить в число узлов x_k .

Введём остаток для интерполяционного многочлена:

$$R_n(f) = f(x) - \Phi(x), x \in [a, b]$$
 (4)

Как известно из теории интерполирования, $\Phi(x) = \sum_{k=0}^{n} f(x_k) \Phi_i(x_k)$, где

$$\Phi_i(x_k) = \begin{cases} 1, x_i = x_k, k, i = 0, 1, \dots, n \\ 0, x_i \neq x_k \end{cases}$$
(5)

и являются, с учётом представления (3), линейной комбинацией функций $\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x) \,. \, \text{Пусть существуют величины} \,\, A_k = \int\limits_a^b \Phi(x) dx \,. \, \text{Тогда}$

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} A_{k} f(x_{k}) + \int_{a}^{b} R_{n}(f)dx,$$
(6)

где $A_k = \int_a^b \Phi_k(x) dx$. Полагая приближённо

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$
(7)

получаем квадратурную формулу. Очевидно, её остаток

$$\rho_n(f) = \int_a^b R_n(f) dx \tag{8}$$

и зависит от величины погрешности интерполяционного многочлена. На практике в качестве функции $f_k(x)$ чаще всего используют следующие системы Чебышева:

A.
$$\varphi_k(x) = x^k$$
, $k = 0,1,...,n$;
B. $\varphi_k(x) = e^{\alpha_k x}$, $k = 0,1,...,n$;

где α_k —некоторая числовая последовательность попарно различных действительных чисел;

B.
$$\varphi_0(x) = 1$$
, $\varphi_1(x) = \sin x$, $\varphi_2(x) = \cos x$, $\varphi_3(x) = \sin 2x$,...., $\varphi_{2n-1}(x) = \sin nx$, $\varphi_{2n}(x) = \cos nx$.

В первом случае интерполирование называется алгебраическим, во втором - экспоненциальным, в третьем — тригонометрическим. Последнее применяется для приближения 2π периодических функций. С учётом вида функций φ_k получаем соответствующие им квадратурные A_k .

1.2. Квадратурная формула на основе многочлена Лагранжа

Многочлен Лагранжа $L_n(x)$ строится для базисной системы $\varphi_k(x)=x^k$, $k=0,1,\ldots,n$, и функции $\Phi_k(x)$ в этом случае легко вычисляются. Поэтому нетрудно получить квадратурную формулу в явном виде. Дейст-

вительно,
$$L_n(x) = \sum_{k=0}^n f(x_k) \Phi_k(x)$$
,

где функции

$$\Phi_k(x) = w_n(x) \cdot ((x - x_k)w'_n(x_k))^{-1}. \tag{9}$$

Тогда квадратурные коэффициенты

$$A_{k} = \int_{a}^{b} \frac{w_{n}(x)}{(x - x_{k})w'_{n}(x_{k})} dx,$$
(10)

Здесь $w_n(x)=(x-x_0)(x-x_1)\dots(x-x_n)$, а x_k - узлы интерполяции. Очевидно, погрешность квадратурной формулы будет равна величине $\rho_n(f)=\int\limits_a^b R_n(x)dx$, где $R_n(x)$ - остаток для формулы Лагранжа. Например,

если f(x) будет (n+1) раз непрерывно дифференцируема на [a,b], то

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} w_n(x), \ \xi = \xi(x) \in [a,b]$$

и соответственно погрешность

$$\rho_n(f) = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi) w_n(x) dx.$$
 (11)

Тогда имеем равенство

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} A_{k} f(x_{k}) + \rho_{n}(f),$$
(12)

где коэффициенты A_k вычисляются по формуле (10), а $\rho_n(f)$ по (11).

Оценим остаток $\rho_n(f)$ в случае $\left|f^{(n+1)}(x)\right| \leq M_{n+1}$, где число $M_{n+1} \geq \sup \left|f^{(n+1)}(x)\right|$ на [a,b]. Тогда, очевидно, из (11) имеем

$$\left| \rho_n(f) \right| \le \frac{M_{n+1}}{(n+1)!} \int_a^b w_n(x) dx \le \frac{M_{n+1}}{(n+1)!} (b-a)^{n+1}.$$
 (13)

Отметим, что оценкой (13) можно пользоваться для получения априорной погрешности квадратурной формулы

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_k f(x_k). \tag{14}$$

Если пределы интегрирования a, b являются узлами интерполяции, то квадратурная формула (14) называется формулой "замкнутого типа", а если этого нет, то "открытого типа".

Замечание 1. Очевидно, квадратурная формула (14) точна, если $f(x) = L_n(x)$, так как $R_n(x) \equiv 0$, и поэтому $\rho_n(f) = 0$. Также она будет точна для $f(x) = P_n(x)$, $P_n(x)$ — любой многочлен n-ой степени, ибо в этом случае $L_n(x) \equiv P_n(x)$. Легко проверить, что $\rho_n(f) = 0$ и для f(x), являющейся многочленом степени меньше n-ой. Основываясь на этом принципе, можно получить квадратурные коэффициенты A_k другим способом. Действительно, поскольку имеем $\rho_n(x^k) = 0$ для k = 0, то

$$I_0 = \sum_{k=0}^n A_k$$
; $I_1 = \sum_{k=0}^n A_k x_k$; ...; $I_n = \sum_{k=0}^n A_k x_k^n$, (15)

а числа

$$I_k = \int_a^b x^k dx = \frac{(b^{k+1} - a^{k+1})}{(k+1)}$$
, где $k = \overline{0, n}$.

Тогда из (15) – системы линейных алгебраических уравнений находим A_k для всех $k=0,1,\dots,n$. Очевидно, определитель системы (15) равен $\Delta=\prod_{k>j}(x_k-x_j)$ и является определителем Вандермонда, который отличен

от нуля. Отсюда имеем единственное решение A_k системы (15).

1.3. Формулы Ньютона-Котеса

Это формулы с равноотстоящими узлами и шагом h=(b-a)/n, а узлы $x_0=a,\ldots,x_k=a+k\cdot h,\ldots,x_n=b$. Тем самым осуществляется деление отрезка [a,b] на n равных частей. Обозначим $Y_k=f(x_k),\ k=\overline{0,n}$. Далее, используя для квадратурной формулы (14) многочлен Лагранжа с равноотстоящими узлами, получаем из (10) величины

$$A_k = h \cdot \frac{(-1)^{n-k}}{k! \cdot (n-k)!} \cdot \int_0^n \frac{t^{[n+1]}}{t-k} dt, \ k = \overline{0, n},$$
 (16)

где $t = (x - x_0)/h$. С учётом h = (b - c)/n имеем

$$H_k = h \cdot \frac{(-1)^{n-k}}{n \cdot k! \cdot (n-k)!} \cdot \int_0^n \frac{t^{\lfloor n+1 \rfloor}}{t-k} dt, \ k = 0,1,\dots,n,$$
 (17)

и $A_k = (b-a)H_k$. Здесь $t^{[n+1]} = t(t-1)\dots(t-n)$. Поскольку H_k безразмерны, то их можно подсчитать для любого h. Постоянные H_k называют коэффициентами Котеса. Их очевидные свойства:

$$\sum_{k=0}^{n} H_k = 1, \ H_k = H_{n-k}. \tag{18}$$

С учётом связи между A_k и H_k получаем квадратурную формулу, называемую формулой Ньютона-Котеса:

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot \sum_{k=0}^{n} H_{k} Y_{k}.$$
(19)

Остаточный член этой формулы для n раз непрерывно дифференцируемой функции вычисляется по равенству (11) и имеет вид:

$$\rho_n(f) = h^{n+2} \cdot \int_0^n \frac{f^{(n+1)}(\alpha) \cdot t^{[n+1]}}{(n+1)!} dt, \ \alpha = \alpha(t) \in [0, n].$$
 (20)

Очевидно, для $|f^{(n+1)}(x)| \le M_{n+1}$ получаем из (20) оценку

$$\rho_n(f) = M_{n+1} \cdot h^{n+2} \cdot \int_0^n \frac{t^{[n+1]}}{(n+1)!} dt \quad . \tag{21}$$

Таким образом, отсюда можно получить априорную погрешность квадратурной формулы.

1.4. Частные случаи формулы Ньютона-Котеса

Случай 1. Формула прямоугольников. Пусть n=0. Тогда функция f(x) приближается на [a,b] многочленом $L_0(x)=f(x_0)$, где точка $x_0=\frac{a+b}{2}$. Используя формулу (19), имеем

$$\int_{a}^{b} f(x)dx = (b-a) \cdot f(x_0) + \rho_0(f). \tag{22}$$

Поскольку $|(b-a)\cdot f(x_0)|$ есть площадь прямоугольника, то формула (22) по этой причине называется формулой прямоугольника. Для дважды непрерывно дифференцируемой f(x) её погрешность имеет вид:

$$\rho_0(f) = \frac{1}{2} \int_a^b (x - a)^2 \cdot f''(\xi) dx, \ \xi = \xi(x) \in [a, b].$$
 (23)

Используя обобщённую теорему о среднем для определённого интеграла, получаем

$$\rho_0(f) = \frac{1}{2} \cdot f''(\alpha) \cdot \frac{(b-a)^3}{3}, \ \alpha \in [a,b].$$
(24)

Отсюда видно, что эта формула для применения мало годна из-за её большой, вообще говоря, погрешности остатка на больших отрезках [a,b]. Поэтому на практике используют её обобщённую формулу.

Для этого разделим отрезок [a,b] на n равных частей длины h=(b-a)/n и применим к каждому отрезку $[x_k,x_{k+1}]$ формулу (22):

$$\int_{x_{k}}^{x_{k+1}} f(x)dx = h \cdot f(x_{k}^{*}) + \rho_{k}(f), \ x_{k}^{*} = x_{k-1} + \frac{h}{2}$$
 (25)

Здесь в случае дважды непрерывно дифференцируемой функции остаток $\rho_k(f) = f''(\alpha_k) \cdot h^3 / 6$. Тогда

$$\int_{a}^{b} f(x)dx = h \cdot \sum_{k=0}^{n-1} f(x_{k}^{*}) + \frac{h^{3}}{6} \cdot \sum_{k=0}^{n-1} f''(\alpha_{k}).$$
 (26)

Известно [1], [2], что

$$\rho(f) = \frac{h^3}{6} \cdot \sum_{k=0}^{n-1} f''(\alpha_k) = \frac{h^3 \cdot n}{6} \cdot f''(\xi), \ \xi \in [a, b]. \tag{27}$$

Тогда, беря h = (b-a)/n, получаем обобщённую формулу прямоугольников

$$\int_{a}^{b} f(x)dx = h \cdot \sum_{k=0}^{n-1} f(x_{k}^{*}) + \frac{(b-a)^{3}}{6 \cdot n^{2}} \cdot f''(\xi), \ \xi \in [a,b].$$
 (28)

Откидывая остаток, имеем приближённо с точностью до $\rho(f)$

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{k=0}^{n-1} f(x_k^*). \tag{29}$$

Здесь $x_k^* = x_{k-1} + \frac{h}{2}$, где $k = \overline{0,n}$. Погрешность в (29) порядка h^2 .

Замечание 2. Отметим, что последняя формула носит название центральных прямоугольников. Имеются еще другие формулы левых, правых прямоугольников. Так для квадратурной формулы правых прямоугольников:

$$A_j^{(n)} = (b-a)/n$$
, $s_j^{(n)} = a+jh$, $h = (b-a)/n$, $j = 1,...,n$.

Для формулы же левых прямоугольников

$$A_j^{(n)} = (b-a)/n$$
, $s_j^{(n)} = a + (j-1)h$, $h = (b-a)/n$, $j = 1,...,n$.

В случае же центральных прямоугольников

$$A_j^{(n)} = (b-a)/n$$
, $s_j^{(n)} = a + (j-0.5)h$, $h = (b-a)/n$, $j = 1,...,n$.

Отметим, что все эти три случая можно объединить одной формулой:

$$A_{j}^{(n)} = (b-a)/n, \quad h = (b-a)/n, \quad j = 1,...,n,$$

а параметр p=0 и узлы $s_j^{(n)}=a+(j-p)h$ для формулы правых прямоугольников, p=1 для левых прямоугольников и p=0.5 для центральных прямоугольников.

Здесь квадратурная формула получается из замены

$$\int_{a}^{b} g(s)ds = \sum_{j=1}^{n} A_{j}^{(n)} g(s_{j}^{n}) + O(1/n^{m}),$$
 (2)

где $A_j^{(n)}$ — квадратурные коэффициенты и $s_j^{(n)}$ — узлы квадратуры, число m — порядок погрешности квадратуры, которая равна $O(1/n^m)$. При от-

брасывании остатка $O(1/n^m)$ интеграл заменяется на его приближение, вычисляемое по формуле $\int\limits_a^b g(s)ds \approx \sum\limits_{j=1}^n A_j^{(n)}g(s_j^n)$ с точностью $O(1/n^m)$. Погрешность для формул правых и левых прямоугольников $R_n = O(1/n)$, а центральных $R_n = O(1/n^2)$.

Случай 2. Формула трапеций. Пусть n=1. Тогда функция f(x) на [a,b] заменяется интерполяционным многочленом $L_1(x)$, построенным для значений f(a), f(b). Тем самым имеет формулу Ньютона-Котеса в простейшем виде. Её коэффициенты $H_0=H_1=\frac{1}{2}$. Тогда интеграл

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}(f(a)+f(b)) + \rho_{1}(f)$$
(30)

или приближённо, после отбрасывания остатка,

$$\int_{a}^{b} f(x)dx \cong \frac{b-a}{2} (f(a) + f(b)).$$

Эта квадратурная формула называется формулой трапеций. Её погрешность для f''(x) непрерывной будет

$$\rho_1(f) = -\frac{(b-a)^3}{12} \cdot f''(\eta), \ \eta \in [a,b]. \tag{31}$$

Однако на практике обычно используется <u>обобщённая формула трапеций.</u> Отрезок [a,b] при этом делим на n частей. Тогда

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot ((f(x_0) + f(x_n)) + 2 \cdot \sum_{k=1}^{n} f(x_k)) - \frac{h^3}{12} \cdot \sum_{k=1}^{n} f''(\eta_k), \quad (32)$$

где

 $\eta_k \in [x_{k-1}, x_k], x_0 = a, x_n = b, a x_k = x_0 + k \cdot h$ и h = (b-a)/n.

Действуя аналогично выводу предыдущей обобщённой формулы, имеем

$$\int_{a}^{b} f(x)dx \cong \frac{h}{2} \cdot ((f(x_0) + f(x_n)) + 2 \cdot \sum_{k=1}^{n} f(x_k)) + R(\alpha), \quad (33)$$

где $\alpha \in [a,b]$. Тогда, отбрасывая остаток,

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \cdot ((f(x_0) + f(x_n)) + 2 \cdot \sum_{k=1}^{n} f(x_k))$$
 (34)

с точностью до $\rho_n(f) = \frac{-(b-a)^3 \cdot f''(\alpha)}{12 \cdot n^2}$, то есть порядка h^2 .

Случай 3. Формула Симпсона. Пусть n=2. Тогда функция f(x) на [a,b] заменяется параболой $L_2(x)$. Имеем по формуле Ньютона-Котеса

$$\int_{a}^{b} f(x)dx = \frac{(b-a)^{3}}{3} \cdot (f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b)) + \rho_{2}(f)$$
 (35)

Если производная $f^{(4)}(x)$ непрерывна, то погрешность

$$\rho_2(f) = -\frac{(b-a)^5}{90} \cdot f^{(4)}(\eta), \ \eta \in [a,b]. \tag{36}$$

Для больших отрезков [a,b], вообще говоря, $\rho_2(f)$ велико. Поэтому используется обобщённая формула Симпсона, получаемая также, как и обобщённые формулы прямоугольников и трапеций. Для этого разбивается [a,b] на 2n частей с шагом h = (b-a)/2n. На основе (35), (36)

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6 \cdot n} \cdot (y_0 + y_{2 \cdot n} + 4 \cdot \sigma_1 + 2 \cdot \sigma_2) - \frac{h^5}{90} \cdot \sum_{k=1}^{n} f^{(4)}(\eta_k), \quad (37)$$

где $\eta_k \in [x_{2k-2}, x_{2k}]$. На основе [1], [2] получаем равенство

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6 \cdot n} \cdot (y_0 + y_{2 \cdot n} + 4 \cdot \sigma_1 + 2 \cdot \sigma_2) - \frac{n \cdot h^5 \cdot f^{(4)}(\eta)}{90}, \quad (38)$$

где $\eta \in [a,b]$. Отбрасывая в (38) остаток, получаем

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6 \cdot n} \cdot (y_0 + y_{2 \cdot n} + 4 \cdot \sigma_1 + 2 \cdot \sigma_2)$$
(39)

обобщённую квадратурную формулу Симпсона с погрешностью порядка h^4 :

$$\rho_{2n} = \frac{-(b-a)^5}{180(2n)^4} f^{(4)}(\eta), \quad \sigma_1 = \sum_{k=1}^n Y_{2\cdot k-1}, \quad \sigma_2 = \sum_{k=1}^n Y_{2\cdot k}, \quad Y_k = f(x_k).$$
 (40)

1.5. Примеры на квадратурные формулы Ньютона-Котеса

<u>Пример 1.</u> Для n=4 вычислить по обобщённой формуле трапеций интеграл $J=\int\limits_{1}^{3}(2+x)^{-1}dx$. Оценить погрешность метода.

Решение. В нашем случае $f(x) = (2+x)^{-1}$ и a=-1, b=3, n=4. Тогда приближённо по (34) имеем $J\approx 1,6833$. При оценке погрешности исходим из (33). Так как $0<2\cdot(2+x)^{-3}\leq 2$, то

$$|\rho_4(f)| = -\frac{|(b-a)^3|}{12 \cdot n^2} \cdot f''(\alpha) \le \frac{1}{12} \cdot \frac{4^3}{4^2} \cdot 2 = \frac{2}{3} \approx 0,67.$$
 (41)

Полученное приближённое значение интеграла будет избытком, ибо точное его значение $\ln 2 = 1,6094$. Итак, оценка (41) завышена.

Пример 2. Для n = 4 вычислить по формуле Симпсона $J = \int_{1}^{3} (2+x)^{-1} dx$,

$$J = \int_{-1}^{3} (2+x)^{-1} dx,$$

сравнить со значением примера 1 и оценить погрешность.

Решение. По обобщённой формуле Симпсона $J \approx 1,6222$. Так как $0 < 24 \cdot (2+x)^{-5} = f^{(4)}(x) \le 24$, то по (40) получаем

$$\left| \rho_4(f) \right| \le \frac{4^5}{180 \cdot 4^4} \cdot 24 = \frac{8}{15} \approx 0,54.$$
 (42)

Итак, приближённое значение интеграла здесь точнее, чем в примере 1, хотя использовано одинаковое число операций. Оценка (42) завышена.

Замечание 3 к примерам 1 и 2. Если исходить из оценок погрешности обобщённых формул трапеций и Симпсона, то у приближённых значений нет ни одной верной цифры, ибо погрешность превосходит 0,5. Это говорит о том, что первая перед запятой цифра сомнительна. Из сравнения же с точным значением получаем совпадение двух первых цифр. Это показывает также грубость априорных оценок (33), (40). Однако они годны для вычисления интеграла с заданной точностью.

Рассмотрим теперь типы примеров на вычисление интегралов с заданной точностью, где надо определить здесь n.

Пример 3. Вычислить с одной верной цифрой после запятой интеграл $J = \int_{0}^{4} (2+x)^{-1} dx$ и выбрать подходящую квадратурную формулу.

Решение. Естественно ожидать, что формула Симпсона даёт необходимую точность при меньших затратах вычислительного труда по сравнению с правилом трапеций или прямоугольников. Действительно,

$$0 < 2 \cdot (2+x)^{-3} = f''(x) \le 0.25$$
.

Далее, имеем неравенства

$$0 < 24 \cdot (2+x)^{-5} = f^{(4)}(x) \le 0.75, \ x \in [0,4].$$

Тогда оценка остатка для формулы трапеций будет

$$|\rho_n(f)| \le \frac{4^3}{12 \cdot n^2} \cdot \frac{1}{4} = \frac{4}{3 \cdot n^2},$$
 (43)

а для формулы Симпсона

$$|\rho_n(f)| \le \frac{4^5}{180 \cdot n^4} \cdot \frac{3}{4} = \frac{4}{3 \cdot n^2} \cdot \frac{4^2}{5 \cdot n^2}.$$
 (44)

Так как точность с одной верной цифрой после запятой означает, что погрешность $\varepsilon \le 0,05$, то из неравенств (43), (44) видно, что следует взять $n \ge 2$. Очевидно, формула Симпсона точнее, чем трапеций. Действительно, если пользоваться формулой трапеций, то для достижения указанной в задаче точности достаточно потребовать $4 \cdot (3 \cdot n^2)^{-1} \le 0,05$. Поэтому можно взять n = 6. Для формулы же Симпсона $4 \cdot (3 \cdot n^2)^{-1} \cdot 4^2 \cdot (5 \cdot n^2)^{-1} \le 0,05$ и, следовательно, можно взять n = 4. Применяя формулу Симпсона при n = 4, имеем $J \approx 1,1$. Отметим, что точное значение интеграла J = 1,098612.

Замечание 4. Следует сказать, что формула Симпсона не всегда будет давать более точный результат, чем формула трапеций. Например, для функции $f(x) = -25 \cdot x^4 + 45 \cdot x^2 - 8$ имеем $\int_{-1}^{1} f(x) dx = 4$. При n = 2 формула трапеций даёт точный результат при узлах $x_0 = 1$, $x_1 = 0$, $x_2 = 1$. Но формула Симпсона при n = 2 не обеспечивает и знака интеграла, ибо для неё значение равно $-\frac{8}{3}$. Для увеличения точности формулы Симпсона здесь надо увеличить n.

Вычисление определенного интеграла при округлении.

Отметим, что в примерах 1-3 значения $f(x_k)$ вычислялись точно.

Пример 4. Вычислить по формуле трапеций с двумя верными знаками после запятой значение интеграла $J = \int\limits_0^1 (1+x^2)^2 \, dx$.

Решение. Определяем сначала n. Нетрудно проверить, что

$$((1+x^2)^{-1})^{(n)} = n! \cos^{n+1} y \cdot \sin(n+1) \cdot (y + \frac{\pi}{2}), \tag{45}$$

где, $y=\arctan(x)$. Отсюда $((1+x^2)^{-1})^2 \le 2!$ для всех $x\in[0,1]$. Используя формулу остатка (31), имеем для требуемого n неравенство $(12\cdot n^2)^{-1}\cdot 2\le 0{,}005$. Отсюда видно, что достаточно взять n=10.

Составим таблицу значений $f(x)=(1+x^2)^{-1}$ в узлах $x_k=k\cdot h$, где k=0,10, а h=0,1. Возьмем здесь 3 верные цифры после запятой, чтобы иметь запас точности. Тогда нетрудно подсчитать значения $\frac{f(x_0)+f(x_{10})}{2}=0,750, \ \sum_{k=1}^9 f(x_k)=7,099$. По формуле трапеций при n=10 имеем число $J=0,1\cdot (7,099+0,750)=0,7849$, принимаемое за приближённое значение интеграла J. Отметим, что его точное значение равно $\frac{\pi}{4}=0,7853$, т.е. две цифры совпадают после запятой.

Пример 5. Для n = 10 вычислить интеграл $\int_{0}^{1} (1 + x^{2})^{-1} dx$ по формуле

Симпсона и сравнить результат с формулой трапеций примера 4.

Решение. Из формулы для остаточного члена (40) по Симпсону, имеем оценку $|\rho_{10}(f)| \le 180^{-1} \cdot 10^{-4} \cdot 4! < 0,00005$. Здесь взято неравенство, полученное из (45) для оценки $((1+x^2)^{-1})^{(4)} < 4!$. Так как $|\rho_{10}(f)| \le 0,00005$, то это означает, что по квадратурной формуле Симпсона можно получить результат с 4 верными цифрами после запятой. Для этого достаточно вести вычисления с 5 цифрами после запятой. Вычисляя $f(x_k)$ с 5 верными цифрами после запятой, получаем $f(x_0) + f(x_{10}) = 1,5000$, $\sigma_1 = 3,93116$, $\sigma_2 = 3,16855$. Отсюда J — значение формулы Симпсона будет: J = 0,78537. Таким образом, формула Симпсона здесь точнее, ибо совпадают 4 цифры после запятой в точном и приближённом значениях интеграла J = 0,78537.

Замечание 5. Если f(x) задана таблично, то, в предположении отсутствия скачков, для приближённой оценки погрешности можно взять такие соотношения:

1) для формулы трапеций остаток
$$\rho_n(f) = \frac{(b-a) \cdot \Delta^2 f}{12}$$
;

2) для формулы Симпсона остаток
$$\rho_n(f) = \frac{-(b-a) \cdot \Delta^4 f}{180}$$
,

где под $\Delta^2 f$, $\Delta^4 f$ подразумевается среднее арифметическое значение конечных разностей соответствующего порядка. Однако этими оценками надо пользоваться осторожно. Они применяются только в том случае, если конечные разности соответствующего порядка не сильно меняются. На практике для аналитически заданной функции часто начинают вычисления с приблизительно подобранным шагом, а затем вычисляют с шагом, вдвое меньшим. Если эти полученные значения совпадают с заданной степенью точности, то вычисления останавливают и за приближенное значение интеграла берут любое из найденных значений. Иначе процедура повторяется. Указанный прием широко используется при вычислении интегралов на ЭВМ, ибо он позволяет осуществить автоматический выбор шага при заданной точности с контролем погрешности вычислений.

Приведем теперь примеры приближенного вычисления интегралов, у которых первообразные в конечном виде не выражаются.

Пример 6. Вычислить полный эллиптический интеграл 2-го рода:

$$E = \int_{0}^{\pi/2} \sqrt{1 - 0.5 \cdot \sin^2 x} dx$$

с 2 верными знаками после запятой по формуле Симпсона.

Решение. Дифференцируя тождество $[f(x)]^2 = 1 - 0.5 \cdot \sin^2 x$, легко получить оценку $f^{(4)}(x)$. Имеем $\left| f^{(4)}(x) \right| < 12$ при $x \in [0, \frac{\pi}{2}]$. Поэтому для остатка формулы Симпсона на основе (36) имеем:

$$\left| \rho_n(f) \right| \le \left(\frac{\pi}{2} \right)^5 \cdot (180 \cdot n^4)^{-1} \cdot 12 < \frac{2}{3} \cdot \frac{1}{n^4}$$

с учетом $(\frac{\pi}{2})^5 < 10$. Поскольку две верные цифры после запятой означают, что погрешность $\varepsilon < 0{,}005$, то для получения $|\rho_n(f)| < \varepsilon$ достаточно взять n=6. Чтобы не потерять точность, подсчитаем $f(x_k)$, где $k=0{,}1,...,6$, с 4 верными цифрами после запятой. Тогда величины $f(x_0) + f(x_6) = 1{,}7071$, $\sigma_1 = 2{,}5795$, $\sigma_2 = 1{,}7259$. Отсюда J- значение формулы Симпсона равно 1,351. Следовательно, приближённо $E=1{,}351$ и имеет заведомо 2 верные цифры после запятой. Отметим, что точное значение $E=1{,}351...$

Пример 7. Вычислить интеграл $\int_0^1 f(x) dx$ по формуле Симпсона с 4 верными знаками после запятой, где $f(x) = e^{-x^2}$.

Решение. Легко показать, что $|f^{(4)}(x)| \le 12$. Поэтому модуль $|\rho_n(f)| \le (180 \cdot n^4)^{-1} \cdot 12$ по (36). Чтобы получить заданную точность подсчета интеграла с $\varepsilon < 0{,}00005$, то есть 4 верные цифры, достаточно взять n=10. Тогда заведомо $|\rho_{10}(f)| \le 0{,}000007$. Для функции f(x) составляем таблицу значений с шагом $h=0{,}1$ и при $x_k=k\cdot h$, $k=\overline{0{,}10}$, вычисляем $f(x_k)$ с 5 верными цифрами после запятой. Это даст требуемую точность. Вычисляя, имеем: $f(x_0)+f(x_{10})=1{,}36788$, $\sigma_1=3{,}74027$, $\sigma_2=3{,}0379$. Отсюда получаем J — значение формулы, равное $0{,}74682$. Следовательно, приближенно J равно $0{,}74682$ и будет здесь 4 верные цифры.

2. КВАДРАТУРНАЯ ФОРМУЛА ГАУССА

Рассмотренные выше формулы численного интегрирования типа Ньютона-Котеса и другие полученные из них имеют простой вид, удобны для практики. Чтобы повысить точность результата, отрезок [a,b] разбивался на достаточно большое число частей. Но возможны и другие способы улучшения точности квадратурной формулы за счёт повышения степени многочлена, для которого эта формула точна. В квадратурных формулах Гаусса A_k и x_k подбирают так, чтобы приближённое

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} A_{k} \cdot f(x_{k})dx, \ x_{k} \in [a,b]$$

$$\tag{46}$$

равенство было точным для всех многочленов наиболее большой степени. Здесь A_k - квадратурные коэффициенты, а x_k — узлы функции f(x).

Пусть a = -1, b = 1. Тогда квадратурная формула Гаусса

$$\int_{-1}^{1} f(x)dx \cong \sum_{k=1}^{n} A_k \cdot f(x_k), \qquad A_k = 2 \cdot ((1 - x_k^2) \cdot [p'_n(x_k)]^2)^{-1}, \tag{47}$$

а узлы x_k - корни многочлена Лежандра

$$p_n(x) = \frac{1}{2^n \cdot n!} \cdot \frac{d^n \cdot (x^2 - 1)^n}{d \cdot x^n}$$

$$\tag{48}$$

Приведём для разных n Таблицу 1 значений A_k и x_k :

$$n=1\,,\;x_1=0\,,\;A_1=2\,;\;n=2\,,\;x_2=-x_1=0,5773\,,\;A_1=A_2=1\,;$$

$$n = 3$$
, $x_2 = 0$, $x_3 = -x_1 = 0.7746$, $A_2 = \frac{8}{9}$, $A_1 = A_3 = \frac{5}{9}$;

$$n = 4$$
, $x_3 = -x_2 = 0.3340$, $x_4 = -x_1 = 0.8611$, $A_1 = A_4 = 0.3478$,

$$A_2 = A_3 = 0,6521$$
;

$$n = 5$$
, $x_3 = 0$, $x_4 = -x_2 = 0.5385$, $x_5 = -x_1 = 0.9062$, $A_3 = 0.5689$,

$$A_2 = A_4 = 0,4786$$
, $A_1 = A_5 = 0,2369$;

$$n = 6$$
, $x_3 = -x_4 = 0.2386$, $x_6 = -x_1 = 0.9325$, $x_5 = -x_2 = 0.6612$,

$$A_1 = A_6 = 0.1713$$
, $A_2 = A_5 = 0.3608$, $A_3 = A_4 = 0.4679$;

Для $f^{2\cdot n}(x)$ непрерывной на [-1,1] погрешность формулы Гаусса будет

$$\rho_n(f) = \frac{2^{2 \cdot n + 1} \cdot (n!)^4}{(2 \cdot n + 1) \cdot (2 \cdot n!)^3} \cdot f^{(2 \cdot n)}(\xi), \ \xi \in [-1, 1]$$
(49)

При вычислении же интеграла с $a \neq -1$ или $b \neq 1$ нужна замена

$$t = \frac{b-a}{2} \cdot x + \frac{a+b}{2} \tag{50}$$

в $\int_a^b f(t)dt$, где $x \in [-1,1]$. В этом случае имеем равенство

$$\int_{a}^{b} f(t)dt = \frac{b-a}{2} \cdot \sum_{k=1}^{n} A_{k} \cdot f(t_{k}) + R_{n}(f),$$
 (51)

где $t_k=0.5\cdot((b-a)\cdot x+b+a)$, а x_k — узлы формулы Гаусса для отрезка [-1,1] и A_k - соответствующие им коэффициенты. Тогда остаток

$$R_n(f) = 0.5 \cdot (b-a)^{2 \cdot n+1} \cdot \rho_n(f),$$

где величина $\rho_n(f)$ вычислена по (49).

<u>Пример 1</u>. По формуле Гаусса при n = 5 вычислить определённый интеграл $\int_{0}^{1} (1+t^2)^{-1} dt$. Оценить погрешность.

Решение. Положим в (51) n=5, a=0, b=1 и функцию $f(t)=(1+t^2)^{-1}$, а коэффициенты A_k и узлы x_k из Таблицы 1. При этом сделаем замену $t=0,5\cdot(x+1)$, $x\in[-1,1]$. Тогда имеем

$$J_5 = 2 \cdot \sum_{k=1}^{5} \frac{A_k}{4 + (x_k + 1)^2} = 0,78539816.$$
 (52)

Нетрудно проверить, что модуль 10-й производной оценивается $\left|((1+x^2)^{-1})^{(10)}\right| \leq 10! \text{ и с учетом связи } R_n(f) \text{ и } \rho_n(f)$

$$|J - J_5| \le \frac{1 \cdot 2^{11} \cdot (5!)^4}{2^{11} \cdot (10!)^3} \cdot 10! < 0,000002.$$

Отметим, что точное значение $J = \frac{\pi}{4} = 0,785398163...$. При непосредствен-

ном подсчете величины $|J-J_5|$ имеем $|J-J_5| < 0.19 \cdot 10^{-5}$. Таким образом, априорная оценка погрешности оказалась хорошей.

Замечание 6. Подобный способ оценки погрешности на практике используют редко по связи с оценками для высших производных функции f(x). Для контроля точности производят пересчет по другим каким либо формулам и сравнивают результаты. В частности, используют и двойной пересчет по формулам Гаусса, но для разных n. Например, при n и n+1. Наличие одинаковых цифр будет свидетельствовать о точности результата и количестве верных цифр.

Пример 2. Используя двойной пересчет по формуле Гаусса, найти приближённое значение интеграла $J=\int\limits_{1,6}^{2,7}(t+0.8)\cdot(t^2+1.2)^{-\frac{1}{2}}dt$.

Решение. Возьмем значения n=4 и n=5. Далее сделаем подсчёт по формуле (51). Здесь a=1,6, b=2,7, а функция $f(t)=(t+0,8)\cdot(t^2+1,2)^{-\frac{1}{2}}$. Осуществляя переход к [-1,1], сделаем замену

$$t_k = 0.5 \cdot ((b-a) \cdot x_k + b + a) = 2.15 + 0.55 \cdot x_k$$

где x_k — узлы для формулы Гаусса при n=4. Находя $f(t_k)$, имеем из формулы (51) откидывая $R_n(f)$, её значение $J_4=1,3438$. Аналогично проделывая для n=5, получаем приближённое значение $J_5=1,3438$. Совпадение результатов свидетельствует о правильности вычислений. Тогда можно считать, что имеем приближенное значение $J\approx 1,3438$.

3. ВЫЧИСЛЕНИЕ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ

Здесь рассматриваются несобственные интегралы вида $\int_a^b f(x)dx$ и $\int_a^\infty f(x)dx$. Отметим, что они переходят из одного вида в другой при соответствующей замене переменной. Но рассмотрим их отдельно.

Случай 1. Пусть имеем сходящийся несобственный интеграл $\int_a^b f(x)dx$ с особенной точкой a или b. Укажем метод выделения особенности, предложенный Канторовичем Л.В. В этом методе из подинтегральной функции f(x) выделяют как слагаемое некоторую функцию g(x) с той особенностью, что и f(x), но легко интегрируемую. Требуется ещё, чтобы разность $\varphi(x) = f(x) - g(x)$ была достаточно гладкой функцией. Далее $\int_a^b \varphi(x)dx$ вычисляется по какой-либо квадратурной формуле, а $\int_a^b g(x)dx$ вычисляется точным методом интегрального исчисления. Поскольку $f(x) = \varphi(x) + g(x)$, то $\int_a^b f(x)dx = \int_a^b \varphi(x)dx + \int_a^b g(x)dx$. Основываясь на последнем равенстве, получаем приближённое значение несобственного интеграла. Укажем теперь правило построения такой функции g(x), применяемое для достаточно широкого класса несобственных интегралов. Пусть у подинтегральной функции f(x) особая точка a, и функция имеет вид

$$f(x) = (x - a)^{\alpha} \cdot \psi(x), \ 0 < \alpha < 1.$$
 (53)

где $\psi(x)$ раскладывается в степенной ряд:

$$\psi(x) = C_0 + C_1 \cdot (x - a) + C_2 \cdot (x - a)^2 + \dots$$
 (54)

Тогда полагаем

$$g(x) = (x-a)^{-\alpha} \cdot (C_0 + C_1 \cdot (x-a) + \ldots + C_n \cdot (x-a)^n), \tag{55}$$

$$\varphi(x) = (x-a)^{-\alpha} \cdot (C_{n+1} \cdot (x-a)^{n+1} + \ldots) = (x-a)^{n+1-\alpha} \cdot (C_{n+1} + \ldots).$$
 Очевидно, функция $g(x)$ интегрируется непосредственно, а $\varphi(x)$ имеет n

непрерывных производных на [a,b]. Для подсчета интеграла $\int_{a}^{b} \varphi(x) dx$ можно применять побыв крадостири не формулы

но применять любые квадратурные формулы.

<u>Пример 1.</u> Вычислить приближенно интеграл $J = \int_{0.5}^{0.5} (x \cdot (1-x))^{-\frac{1}{2}} dt$.

Решение. Здесь особая точка a = 0. Нетрудно показать, что интеграл J сходящийся. Раскладывая функцию $(1-x)^{-\frac{1}{2}}$ по степеням x, остановимся на члене, содержащем x^4 , и положим

$$g(x) = x^{-\frac{1}{2}} \cdot \left(1 + \frac{x}{2} + \frac{3}{8} \cdot x^2 + \frac{5 \cdot x^3}{16} + \frac{35}{128} \cdot x^4\right),$$

$$\varphi(x) = x^{-\frac{1}{2}} \cdot \left[(1 - x)^{-\frac{1}{2}} \cdot (1 + \dots + \frac{35}{128} \cdot x^4) \right] = \frac{63}{256} \cdot x^{\frac{9}{2}} + \dots$$

Тогда

$$J = \int_{0}^{0.5} g(x)dx + \int_{0}^{0.5} \varphi(x)dx = J_1 + J_2.$$

 $J = \int\limits_0^{0.5} g(x) dx + \int\limits_0^{0.5} \varphi(x) dx = J_1 + J_2 \,.$ Интеграл $J_1 = \int\limits_0^{0.5} g(x) dx$ вычисляется непосредственно и его значение $J_1 = 1,569158...$. Интеграл J_2 можно вычислить, например, по формуле Симпсона. Полагая n=10, имеем $J_2 \approx 0,001163$, и суммируя J_1 и J_2 , получаем $J \approx 1,57080$. Точное же значение интеграла $J = \frac{\pi}{2} = 1,5707963...$

Замечание 7. В некоторых случаях вычисления несобственных интегралов можно использовать квадратурные формулы с весом. Например, квадратурные формулы типа Гаусса. Для этого подинтегральную функцию представляют в виде произведения: $f(x) = p(x) \cdot \phi(x)$. Причем $\phi(x)$ имеет достаточное число производных, а p(x) рассматривают как весовую функцию.

Внутренняя особая точка. Если особая точка $C \in [a,b]$, то используем простой приём, основанный на определении несобственного интеграла. Для этого интеграл представляют в виде:

$$\int_{a}^{b} f(x)dx = \int_{a}^{C-\delta_{1}} f(x)dx + \int_{C+\delta_{2}}^{b} f(x)dx + \int_{C-\delta_{1}}^{C+\delta_{2}} f(x)dx,$$

 $\int\limits_a^b f(x)dx = \int\limits_a^{C-\delta_1} f(x)dx + \int\limits_{C+\delta_2}^b f(x)dx + \int\limits_{C-\delta_1}^{C+\delta_2} f(x)dx\,,$ причем δ_1 , δ_2 выбирают столь малыми, чтобы в пределах заданной точности интеграл $\rho = \int\limits_{C-\delta_1}^{C+\delta_2} f(x) dx$ не влиял бы на результат. Интегралы же $\int\limits_{a}^{C-\delta_1} f(x) dx$,

 $\int_{-\infty}^{\infty} f(x)dx$ уже не имеют особенностей и их вычисляют по каким-либо квад-

ратурным формулам. Пусть, например, $f(x) = |x-c|^{-\alpha} \cdot \varphi(x)$, где $0 < \alpha < 1$, а $|\varphi(x)| \le A$. Тогда

$$\left| \int_{C-\delta_1}^{C+\delta_2} f(x) dx \right| \le A \int_{C-\delta_1}^{C+\delta_2} \left| x - c \right|^{-\alpha} dx = \frac{A}{1-\alpha} \left(\delta_2^{1-\alpha} + \delta_1^{1-\alpha} \right) \approx 0$$

при δ_1 и δ_2 близких к нулю. Отсюда получаем, что $\int\limits_{C-\delta_1}^{C+\delta_2} f(x) dx \approx 0$.

Пример 2. Найти δ_1 и δ_2 такие, чтобы при вычислении интеграла

$$J = \int_{-0.5}^{0.5} |x|^{-\frac{1}{2}} \cdot (1-x)^{-\frac{1}{2}} dx$$

модуль |
ho|<arepsilon , где arepsilon — требуемая точность расчетов.

Решение. Очевидно, у функции $f(x) = |x|^{-\frac{1}{2}} \cdot (1-x)^{-\frac{1}{2}}$ имеется особая внутренняя точка $C = 0 \in [-0,5;0,5]$. Следуя изложенному выше, берём $\varphi(x) = (1-x)^{-\frac{1}{2}}$. Модуль $|\varphi(x)| \le \sqrt{2}$ на [-0,5;0,5]. Так как интеграл J сходится, то для ρ имеем оценку:

$$|\rho| = \left| \int_{-\delta_1}^{\delta_2} f(x) dx \right| \le \sqrt{2} \cdot \int_{-\delta_1}^{\delta_2} |x|^{-\frac{1}{2}} dx = 2\sqrt{2} \cdot (\delta_2^{\frac{1}{2}} + \delta_1^{\frac{1}{2}}).$$
 (56)

Возьмём, например, $\delta_2 = \delta_1$. Тогда из (56) будет $|\rho| < 4 \cdot \sqrt{2} \cdot \delta_1^{\frac{1}{2}}$. Если взять $\delta_1 = \frac{\varepsilon^2}{32}$, то $|\rho| < \varepsilon$. Итак приближенно $\frac{-\delta_1}{32} = \frac{1}{32} \cdot \frac{\delta_1}{32} = \frac{\delta_1}{32} \frac{\delta_1}{32}$

$$\int_{-0.5}^{0.5} |x|^{-\frac{1}{2}} \cdot (1-x)^{-\frac{1}{2}} dx \approx \int_{-0.5}^{-\delta_1} |x|^{-\frac{1}{2}} \cdot (1-x)^{-\frac{1}{2}} dx + \int_{\delta_1}^{0.5} |x|^{-\frac{1}{2}} \cdot (1-x)^{-\frac{1}{2}} dx$$

с точностью до ρ .

Случай 2. Если вычисляется сходящийся несобственный интеграл 1-го рода $\int\limits_a^\infty f(x)dx$, то для его приближенного вычисления используем равенство $\int\limits_a^\infty f(x)dx = \int\limits_a^B f(x)dx + \int\limits_B^\infty f(x)dx$. Причем число B берут настолько большим,

чтобы в пределах заданной точности интеграл $\int_{B}^{\infty} f(x)dx$ не влиял бы на результат. Далее последний интеграл вычисляют по какой-либо квадратурной формуле с нужной точностью.

Пример 3. Вычислить $J = \int_{0}^{\infty} e^{-x^2} dx$ с точностью до 0,0001.

Решение. Очевидно неравенство

$$x^2 - 2Bx + B^2 = (x - B)^2 \ge 0$$
.

Тогда $x^2 \ge 2Bx - B^2$ и отсюда верна оценка

$$\int_{B}^{\infty} e^{-x^{2}} dx \le e^{B^{2}} \int_{B}^{\infty} e^{-2 \cdot B \cdot x} dx = \frac{e^{-B^{2}}}{2 \cdot B}$$
 (57)

Нетрудно установить, что $\frac{e^{-9}}{2\cdot 3} < 0{,}00005$. Поэтому достаточно взять

B=3 . Далее, вычисляя интеграл $\int\limits_0^3 e^{-x^2} dx$ по формуле Симпсона с точно-

стью до 0,00005, находим его приближение $J^*=0,88621$. Полагаем теперь $J\approx 0,88621$. Отметим, что J есть интеграл Эйлера-Пуассона и его точное значение $J=\frac{\pi}{2}=0,8862269\dots$ Таким образом, здесь имеем совпадение в 4

знаках после запятой.

Рассмотрим ещё один пример на применение аддитивного способа для приближенного вычисления несобственного интеграла 2-го рода. Он основан на преобразовании подинтегрального выражения в виде суммы, выделяющей в одном из слагаемых особенность.

Пример 4. Аддитивным способом вычислить $J = \int_{0}^{\pi/2} \ln \cdot \sin x dx$.

Решение. Очевидно равенство $\ln \cdot \sin x = \ln \cdot \frac{\sin x}{x} + \ln x$. Тогда:

$$J = J_1 + J_2 = \int_0^{\frac{\pi}{2}} \ln x + \int_0^{\frac{\pi}{2}} \ln \cdot \frac{\sin x}{x}$$

Интегрируя по частям, вычисляем несобственный интеграл $J_1=-0.861451$ до 6-го верного знака после запятой. В интеграле J_2 подинтегральная функция не имеет особенностей и его можно подсчитать, например, по формуле Симпсона. Полвгвя n=1 находим $J_2=-0.228189$. Отсюда

$$J = J_1 + J_2 \approx -1,089640$$
.

Отметим, что точное значение интеграла J = -1,0890045. Итак, имеем совпадение в трех знаках после запятой, что говорит об удовлетворительных расчетах, ибо в формуле Симпсона здесь большая погрешность. Увеличивая число n, можно получить более точные результаты.

4. ВЫЧИСЛЕНИЕ ДВОЙНОГО ИНТЕГРАЛА

Приближённое вычисление двойного интеграла основано на разных методах. Здесь рассмотрим метод кубатур, который состоит в составлении и непосредственном использовании расчетных выражений, полученных путем замены двойного интеграла конечными суммами на основе применения различных квадратурных формул. Формулы для двойного интеграла называются **кубатурными.** Рассмотрим двойной интеграл по прямоугольной области G = [a, b; c, d], представленный через повторные:

$$\iint_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy$$

Применим правило приближенной квадратуры к внешнему интегралу

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \sum_{i=1}^{n} A_{i} \int_{c}^{d} f(x_{i}, y) dy + R_{n},$$

где R_n – остаточный член, A_i – квадратурный коэффициент, x_i – узлы. Каждое слагаемое в правой части содержит интеграл, который можно вычислить при помощи численного интегрирования:

$$\int_{c}^{d} f(x_{i,y})dy = \sum_{j=1}^{m} B_{j} f(x_{i}, y_{j}) + R_{m}^{*},$$

где B_j квадратурные коэффициенты, а $\ R_m^*$ — остаток. Тогда интеграл

$$\iint_{a c}^{b d} f(x_{i,y}) dx dy = \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} f(x_{i}, y_{j}) + \overline{R_{mn}}$$

с остатком $\overline{R_{mn}}=R_n+\sum_{i=1}^n A_i R_m^*$ и $C_{ij}=A_i B_j$. Здесь узлы (x_i,y_j) и квадра-

турные коэффициенты выбираются из удобства вычисления и точности.

Отбрасывая остаток, приближённо с точность до остатка имеем:

$$\iint_{a \ c} f(x_{i,y}) dx dy \approx \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} f(x_{i}, y_{j})$$
 (58)

по кубатурной формуле (58).

Отметим, что при решении интегральных уравнений широко применяются формулы прямоугольников, трапеций, Симпсона, Гаусса и другие.

Пример 1. Вычислить приближённо интеграл
$$\int_{0}^{\frac{\pi}{2}} dx \int_{0}^{\frac{\pi}{4}} \sin(x+y) dy.$$

Решение. Обозначим $\int\limits_0^{\frac{n}{4}}\sin(x+y)dy=F(x)$. Тогда по формуле Симпсона при n=4 будем иметь

$$\int_{0}^{\frac{\pi}{2}} F(x)dx \approx \frac{\pi}{24} [F_0 + F_4 + 2F_2 + 4(F_1 + F_3)]. \tag{59}$$

Определим интегралы F_i с узлами x_i :

$$F_i = F(x_i) = \int_0^{\frac{\pi}{4}} \sin(x_i + y) dy$$
, $(x_i = \frac{\pi}{8}i, i = 0,1,2,3,4)$

и вычислим их приближённо по формуле Симпсона при n=2 .

Введём узлы
$$y_k = \frac{\pi}{8} k$$
 , $k = 0,1,2$. Тогда

$$\int_{0}^{\frac{\pi}{4}} \sin(x_{i} + y) dy \approx \frac{\pi}{24} \left[\sin(x_{i} + y_{0}) + 4\sin(x_{i} + y_{1}) + \sin(x_{i} + y_{2}) \right] =$$

$$= \frac{\pi}{24} \left[\sin(x_{i} + 0) + 4\sin(x_{i} + \frac{\pi}{8}) + \sin(x_{i} + \frac{\pi}{4}) \right].$$
(60)

Подставляя в (60) узлы $x_i = \frac{\pi}{8}i$, получаем

$$F_0 \approx \frac{\pi}{24} [\sin 0 + 4\sin \frac{\pi}{8} + \sin \frac{\pi}{4}] \approx \frac{\pi}{24} 2.2379,$$

$$F_1 \approx \frac{\pi}{24} \left[\sin(\frac{\pi}{8}) + 4\sin(\frac{\pi}{8} + \frac{\pi}{8}) + \sin(\frac{\pi}{8} + \frac{\pi}{4}) \right] \approx \frac{\pi}{24} 4.1350,$$

$$F_2 \approx \frac{\pi}{24} \left[\sin(\frac{\pi}{4}) + 4\sin(\frac{\pi}{4} + \frac{\pi}{8}) + \sin(\frac{\pi}{4} + \frac{\pi}{4}) \right] \approx \frac{\pi}{24} 5.4027,$$

$$F_3 \approx \frac{\pi}{24} \left[\sin(\frac{3\pi}{8}) + 4\sin(\frac{3\pi}{8} + \frac{\pi}{8}) + \sin(\frac{3\pi}{8} + \frac{\pi}{4}) \right] \approx \frac{\pi}{24} 5.8478,$$

$$F_4 \approx \frac{\pi}{24} \left[\sin(\frac{\pi}{2}) + 4\sin(\frac{\pi}{2} + \frac{\pi}{8}) + \sin(\frac{\pi}{2} + \frac{\pi}{4}) \right] \approx \frac{\pi}{24} 5.4027.$$

Здесь с точность до 4-х знаков после запятой

$$\sin\frac{\pi}{2} = 1, \quad \sin\frac{3\pi}{8} = \sin\frac{5\pi}{8} \approx 0.9239,$$

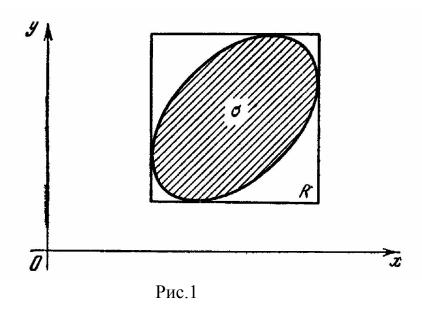
$$\sin\frac{\pi}{4} = \sin\frac{3\pi}{4} \approx 0.7071. \sin\frac{\pi}{8} \approx 0.3827,$$

Подставляя F_i с (i=0,1,2,3,4) в формулу (59), получаем приближённое значение интеграла

$$I = \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{\frac{\pi}{4}} \sin(x+y) dy \approx \left(\frac{\pi}{24}\right)^{2} [2.2379 + 5.4027 + 2 \cdot 5.4027 + 4 \cdot (4.1350 + 5.8478)] = 0.01713473 \cdot 58.3772 = 1.00028.$$

Отметим, что точное значение I=1. Таким образом, как видно, получена достаточная точность, несмотря на малое количество узлов.

Замечание 8. В случае криволинейной области σ



строим прямоугольник $R\supset \sigma$, стороны которого параллельны осям координат (рис.1), Далее, рассмотрим вспомогательную функцию

$$f^*(x.y) = f(x, y)$$
, при $(x, y) \in \sigma$, $f^*(x.y) = 0$, при $(x, y) \in R - \sigma$.

В таком случае, очевидно, имеем:

$$\iint_{G} f(x, y) dxdy = \iint_{R} f^{*}(x, y) dxdy.$$

Последний интеграл по прямоугольнику может быть вычислен по общей кубатурной формуле (58).

Замечание 9. Отметим, что в случае области, являющейся криволинейной трапецией, возможно использовать кубатурную формулу на основе квадратурных. Рассмотрим интеграл

$$I = \iint_G F(x, y) dxdy = \int_a^b \int_{y_1(x)}^{y_2(x)} F(x, y) dxdy.$$

 $I = \iint_G F(x,y) dx dy = \int_a^b \int_{y_1(x)}^{y_2(x)} F(x,y) dx dy \,.$ Очевидно, его можно представить как $I = \int_a^b dx \int_{y_1(x)}^{y_2(x)} F(x,y) dy .$ Рассмотрим $a = \int_a^b dx \int_{y_1(x)}^{y_2(x)} F(x,y) dy .$

интеграл $IV(x) = \int\limits_{y_1(x)}^{y_2(x)} F(x,y) dy$ и для сетки узлов $\{x_k,\ k=1,2,..,n\}$ для каж-

дого x_k вычислим по квадратурам $IV(x_k) = \int\limits_{y_1(x_k)}^{y_2(x_k)} F(x_k,y) dy$. Далее с ис-

пользованием узлов x_k приближённо вычислим $I = \int_{0}^{y_1(x_k)} IV(x) dx$. Здесь тоже

можно использовать квадратурные формулы, беря при этом подходящие свойства x_k . Например, равноотстоящие x_k с шагом h. При этом можно использовать сплайн-интерполяцию и осуществить интегрирование аналогичное как и в формулах Ньютона-Котеса.

Приведём программу в математическом пакете scilab вычисление двойного интеграла по криволинейной трапеции вида

$$G = \{(x.y): 0 \le x \le 1, \ x^2 \le y \le x\}$$

для подинтегральной функции F(x, y) = xy. Точное значение интеграла

$$I = \int_{0}^{1} dx \int_{x}^{x} xy dy = \frac{1}{24}$$
. В программе использованы операторы численного ин-

тегрирования для функции одной переменной для внутреннего интеграла по y и равномерной сетке узлов $x_k = \frac{k-1}{N-1}$ при k = 1, 2, ..., N. Далее использу-

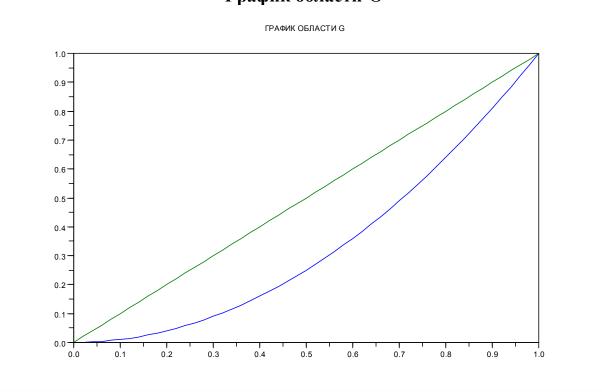
ется интегрировании сплайн-интерполяции. Выводится также график области G — криволинейной трапеции и осуществляется сравнение точного и приближённого значения интеграла.

Программа

//Численное 2D-интегрирование по G clear;clc; disp('2D-integration for F(x,y)=x*y in G')N=input('Enter N<=101-number knots'); function w=F(x,y), w=x*y, endfunction//Область G при а<=х<=b a=0: b=1: function $w=Y1(x), w=x^2$, endfunction function w=Y2(x), w=x, endfunction

```
disp("Exact integral")
exact=1/24
//Сетки узлов по ОХ и ОУ
h=(b-a)/(N-1);
for i=1:N
x(i)=a+(i-1)*h;
y1(i)=Y1(x(i));
y2(i)=Y2(x(i));
function z=f(y),z=F(x(i),y), endfunction
//Внутреннее интегрирование по у
I(i)=intg(y1(i),y2(i),f);
end
//Внешний интеграл вычислен при
//сплайн-интерполяции по узлам х
INTSPL=intsplin(x,I)
Error=abs(INTSPL-exact)
format('v',25);
//График области G
plot(x,y1,x,y2)
xtitle("ГРАФИК ОБЛАСТИ G")
```

График области G



Здесь точное значение интеграла $I=\frac{1}{24}\approx 0.4166666667$, а приближённое $I^*\approx 0.4166667046$. Тогда ошибка $I^*-I=0.00000000379$ при количестве узлов x_k равном N=51.

Замечание 10. Таким образом можно отметить, что применение сплайн-интерполяции позволяет получить хорошее приближение при вычислении двойного интеграла по криволинейной области.

ЛИТЕРАТУРА

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987. 432 с.
- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. 432 с.
- 3. Вержбицкий В.М. Основы численного анализа. М.: Высшая школа, 2001. 840 с.
- 4. Крылов В.И. Приближенное вычисление интегралов. М.: Наука, 1967. 500 с.
- 5. Алексеев Е.Р., Чеснокова О.В., Рудченко Е.А. Scilab: Решение инженерных и математических задач. М.: ALT Linux: БИНОМ. Лаборатория знаний, 2008. 260 с.

Методические указания к решению задач по численному интегрированию

Составители:

Александр Львович **Калашников** Андрей Михайлович **Федоткин** Валентина Николаевна **Фокина**

Учебно-методическое пособие